如圖,∠AOD=80°,∠AOB=30°,OB是∠AOC的平分線,則∠COD=______度.
∵∠AOB=30°,OB是∠AOC的平分線,
∴∠AOC=2∠AOB=60°,
∴∠COD=∠AOD-∠AOC=80°-60°=20°.
故答案為20.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);
(2)將圖1中的三角板繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為______秒(直接寫出結(jié)果);
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄俊螦OM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

下面是初一(2)班馬小虎同學解的一道數(shù)學題.
題目(原題中沒有圖形):在同一平面上,若∠AOB=70°,∠BOC=15°,求∠AOC的度數(shù).
解:根據(jù)題意畫出圖形,如圖所示,
∵∠AOC=∠AOB-∠BOC
=70°-15°
=55°
∴∠AOC=55°
若你是老師,會判馬小虎滿分嗎?若會,說明理由;若不會,請指出錯誤之處,并給出你認為正確的解法.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是一條直線,OC是∠AOD的平分線,OE在∠BOD內(nèi),∠DOE=
1
3
∠BOD,∠COE=72°,則∠EOB=( 。
A.36°B.72°C.108°D.120°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠AOB與∠COD都是直角,若∠BOC:∠AOD=7:11,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,點E,O,F(xiàn)在同一條直線上,OE平分∠COB,∠EOC=15°30′,∠AOB=90°,求∠AOF的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一條射線OA,如果從點O再引兩條射線OB和OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線AB和CD相交于O點,∠COE=90°,OF平分∠AOE,∠COF=34°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習冊答案