【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于AB兩點,與雙曲線y交于EF兩點,若AB2EF,則k的值是_____

【答案】

【解析】

FHx,ECy,FHEC交于D,先利用一次函數(shù)圖像上的點的坐標(biāo)特征得到A2,0),B02),易得AOB為等腰直角三角形AB2,所以,EFAB,DEF為等腰直角三角形,FDDEEF1,設(shè)F點坐標(biāo)是:(t,﹣t+2),E點坐標(biāo)為t+1,﹣t+1),根據(jù)反比例函數(shù)圖象上的點的坐標(biāo)特征得到t(﹣t+2)=(t+1)(﹣t+1),解得tE點坐標(biāo)為,),繼而可求得k的值

如圖,FHxECy,FHEC交于D,

由直線y=﹣x+2可知A點坐標(biāo)為2,0),B點坐標(biāo)為0,2),OAOB2

∴△AOB等腰直角三角形,

AB2,

EFAB,

∴△DEF為等腰直角三角形

FDDEEF1,

設(shè)F點橫坐標(biāo)為t,代入y=﹣x+2,則縱坐標(biāo)是t+2,F的坐標(biāo)是:(t,﹣t+2),E點坐標(biāo)為t+1,﹣t+1),

t(﹣t+2)=(t+1)(﹣t+1),解得t,

E點坐標(biāo)為),

k×

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(m1xm,其中m0,它的圖象與x軸從左到右交于RQ兩點,與y軸交于點P,點O是坐標(biāo)原點.下列判斷中不正確的是( 。

A.方程x2﹣(m1xm=0一定有兩個不相等的實數(shù)根B.R的坐標(biāo)一定是(﹣1,0

C.POQ是等腰直角三角形D.該二次函數(shù)圖象的對稱軸在直線x=1的左側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x22x+3x軸于點A、C(點A在點C左側(cè)),交y軸于點B

(1)求A,B,C三點坐標(biāo);

(2)如圖1,點DAC中點,點E在線段BD上,且BE=2DE,連接CE并延長交拋物線于點M,求點M坐標(biāo);

(3)如圖2,將直線AB繞點A按逆時針方向旋轉(zhuǎn)15°后交y軸于點G,連接CG,點P為△ACG內(nèi)一點,連接PAPC、PG,分別以AP、AG為邊,在它們的左側(cè)作等邊△APR和等邊△AGQ,求PA+PC+PG的最小值,并求當(dāng)PA+PC+PG取得最小值時點P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對本校學(xué)生每天完成作業(yè)所用時間的情況進(jìn)行抽樣調(diào)查,隨機(jī)調(diào)查了九年級部分學(xué)生每天完成作業(yè)所用的時間,并把統(tǒng)計結(jié)果制作成如圖所示的頻數(shù)分布直方圖(時間取整數(shù),圖中從左至右依次為第一、二、三、四、五組)和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題.

1)本次調(diào)查的學(xué)生人數(shù)為 人;

2)補(bǔ)全頻數(shù)分布直方圖;

3)根據(jù)圖形提供的信息判斷,下列結(jié)論正確的是 (只填所有正確結(jié)論的代號);

A.由圖(1)知,學(xué)生完成作業(yè)所用時間的中位數(shù)在第三組內(nèi)

B.由圖(1)知,學(xué)生完成作業(yè)所用時間的眾數(shù)在第三組內(nèi)

C.圖(2)中,90120數(shù)據(jù)組所在扇形的圓心角為108°

D.圖(1)中,落在第五組內(nèi)數(shù)據(jù)的頻率為0.15

4)學(xué)生每天完成作業(yè)時間不超過120分鐘,視為課業(yè)負(fù)擔(dān)適中.根據(jù)以上調(diào)查,估計該校九年級560名學(xué)生中,課業(yè)負(fù)擔(dān)適中的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點A、C的坐標(biāo);

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中A02),點B(﹣30).△AOB繞點O逆時針旋轉(zhuǎn)30°得到△A1OB1

1)直接寫出點B1的坐標(biāo);

2)點C20),連接CA1OA于點D,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知C34),以點C為圓心的圓與y軸相切.點A、Bx軸上,且OAOB.點P為⊙C上的動點,∠APB90°,則AB長度的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案