【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長(zhǎng)為( )
A. 2 B. 3 C. D.
【答案】B
【解析】
試題如圖,延長(zhǎng)FD到G,使DG=BE,連接CG、EF;∵四邊形ABCD為正方形,在△BCE與△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF與△ECF中,∵GC=EC,∠GCF=∠ECF,CF=CF,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=,CB=6,∴BE===3,∴AE=3,設(shè)AF=x,則DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===,故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分線(xiàn), 則圖中與∠FDB 相等的角(不包含∠FDB)的個(gè)數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支持四川抗震救災(zāi),重慶市A、B、C三地現(xiàn)在分別有賑災(zāi)物資100噸、100噸、80噸,需要全部運(yùn)往四川重災(zāi)地區(qū)的D、E兩縣.根據(jù)災(zāi)區(qū)的情況,這批賑災(zāi)物資運(yùn)往D縣的數(shù)量比運(yùn)往E縣的數(shù)量的2倍少20噸.
(1)求這批賑災(zāi)物資運(yùn)往D、E兩縣的數(shù)量各是多少?
(2)若要求C地運(yùn)往D縣的賑災(zāi)物資為60噸,A地運(yùn)往D的賑災(zāi)物資為x噸(x為整數(shù)),B地運(yùn)往D縣的賑災(zāi)物資數(shù)量小于A(yíng)地運(yùn)往D縣的賑災(zāi)物資數(shù)量的2倍.其余的賑災(zāi)物資全部運(yùn)往E縣,且B地運(yùn)往E縣的賑災(zāi)物資數(shù)量不超過(guò)25噸.則A、B兩地的賑災(zāi)物資運(yùn)往D、E兩縣的方案有幾種?請(qǐng)你寫(xiě)出具體的運(yùn)送方案;
(3)已知A、B、C三地的賑災(zāi)物資運(yùn)往D、E兩縣的費(fèi)用如下表:
A地 | B地 | C地 | |
運(yùn)往D縣的費(fèi)用(元/噸) | 220 | 200 | 200 |
運(yùn)往E縣的費(fèi)用(元/噸) | 250 | 220 | 210 |
為及時(shí)將這批賑災(zāi)物資運(yùn)往D、E兩縣,某公司主動(dòng)承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用,在(2)問(wèn)的要求下,該公司承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是以原點(diǎn)為圓心, 為半徑的圓,點(diǎn)P是直線(xiàn)y=﹣x+6上的一點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線(xiàn)PQ,Q為切點(diǎn),則切線(xiàn)長(zhǎng)PQ的最小值為( )
A.3
B.4
C.6﹣
D.3 ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線(xiàn)EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)梯子AB斜靠在一豎直的墻AO上,測(cè)得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時(shí)梯子的底端也恰好外移0.5米,則梯子的長(zhǎng)度AB為( )
A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下列兩個(gè)等式:3+2=3×2﹣1,4+=4×﹣1,給出定義如下:
我們稱(chēng)使等式a+b=ab﹣1成立的一對(duì)有理數(shù)a,b為“椒江有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)(3,2),(4,)都是“椒江有理數(shù)對(duì)”.
(1)數(shù)對(duì)(﹣2,1),(5,)中是“椒江有理數(shù)對(duì)”的是 ;
(2)若(a,3)是“椒江有理數(shù)對(duì)”,求a的值;
(3)若(m,n)是“椒江有理數(shù)對(duì)”,則(﹣n,﹣m) “椒江有理數(shù)對(duì)”(填“是”、“不是”或“不確定”).
(4)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的“椒江有理數(shù)對(duì)”
(注意:不能與題目中已有的“椒江有理數(shù)對(duì)”重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)1點(diǎn)20分時(shí),時(shí)鐘的時(shí)針與分針的夾角是幾度?
(2)在時(shí)鐘上,7點(diǎn)到8點(diǎn)之間,時(shí)針和分針何時(shí)成30°的角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線(xiàn)AB上一點(diǎn)O為端點(diǎn)作射線(xiàn) OC,使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線(xiàn)OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,請(qǐng)說(shuō)明OD所在射線(xiàn)是∠BOC的平分線(xiàn);
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com