如圖所示,一個運動員推鉛球,鉛球在點A處出手,出手時球離地面約
5
3
m
.鉛球落地點在B處,鉛球運行中在運動員前4m處(即OC=4)達到最高點,最高點高為3m.已知鉛球經(jīng)過的路線是拋物線,根據(jù)如圖所示的直角坐標系,你能算出該運動員的成績嗎?
能.
∵OC=4,CD=3,
∴頂點D坐標為(4,3),
設y=a(x-4)2+3,
把A
5
3
代入上式,得
5
3
=a(0-4)2+3,
∴a=-
1
12
,
∴y=-
1
12
(x-4)2+3,
即y=-
1
12
x2+
2
3
x+
5
3
,
令y=0,得-
1
12
x2+
2
3
x+
5
3
=0,
∴x1=10,x2=-2(舍去).
故該運動員的成績?yōu)?0m.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為直線x=-1,其中B(1,0),C(0,-3).
(Ⅰ)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(Ⅱ)設拋物線的頂點為D,求△ABD的面積;
(Ⅲ)求使y≥-3的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A為y軸正半軸上一點,A,B兩點關(guān)于x軸對稱,過點A任作直線交拋物線y=
2
3
x2
于P,Q兩點.
(1)求證:∠ABP=∠ABQ;
(2)若點A的坐標為(0,1),且∠PBQ=60°,試求所有滿足條件的直線PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),交y軸于C(0,-2),過B、C畫直線.
(1)求二次函數(shù)的解析式;
(2)點P在x軸負半軸上,且PB=PC,求OP的長;
(3)點M在二次函數(shù)圖象上,過M向直線BC作垂線,垂足為H.若M在y軸左側(cè),且△CHM△BOC,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的對稱軸為直線x=1,與x軸交于A、B兩點,與y軸交于點C,其中A(-1,0)、C(0,3).
(1)求此拋物線的解析式;
(2)若此拋物線的頂點為P,將△BOC繞著它的頂點B順時針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△BO′C′.
①當O′C′CP時,求α的大小;
②△BOC在第一象限內(nèi)旋轉(zhuǎn)的過程中,當旋轉(zhuǎn)后的△BO′C′有一邊與BP重合時,求△BO′C′不在BP上的頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數(shù)的解析式;
(2)設點M為線段OC上一點,且∠MPC=∠BAC,求點M的坐標;
說明:若(2)你經(jīng)歷反復探索沒有獲得解題思路,請你在不改變點M的位置的情況下添加一個條件解答此題,此時(2)最高得分為3分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=-
1
2
x2+
3
2
x+m-2
的圖象與x軸交于A、兩點(點A在點B左邊),與y軸交于C點,且∠ACB=90°.
(1)求這個二次函數(shù)的解析式;
(2)設計兩種方案:作一條與y軸不重合,與△ABC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的
1
4
,寫出所截得的三角形三個頂點的坐標(注:設計的方案不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC是⊙O的直徑,點A在圓上,且AB=AC=4.P為AB上一點,過P作PE⊥AB分別交BC、OA于E、F.
(1)設AP=1,求△OEF的面積;
(2)設AP=a(0<a<2),△APF、△OEF的面積分別記為S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一個實數(shù)a,使S<
15
3
?若存在,求出一個a的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案