在四邊形中,對(duì)角線AC與BD交于點(diǎn)O,△ABO≌△CDO.
(1)求證:四邊形為平行四邊形;
(2)若∠ABO=∠DCO,求證:四邊形為矩形.
解:(1)證明:∵△ABO≌△CDO
∴AO=CO,BO=DO
∴AC、BD互相平分
∴四邊形ABCD是平行四邊形
(2)證明:∵四邊形ABCD是平行四邊形
∴AB∥CD,∴∠ABO=∠CDO
∵∠ABO=∠DCO,
∴∠DCO =∠CDO
∴CO=DO
∵△ABO≌△CDO
∴AO=CO,BO=DO   ∴AO=CO=BO=DO
即AC=BD
∴□ABCD是矩形
(1)利用全等三角形的性質(zhì)求得AO=CO,BO=DO,根據(jù)平行四邊形的判定求證
(2)證得△ABO≌△CDO,再根據(jù)矩形的性質(zhì)判定
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,MN是正方形ABCD的一條對(duì)稱軸,點(diǎn)P是直線MN上的一個(gè)動(dòng)點(diǎn),當(dāng)PC+PD最小時(shí),
∠PCD=_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)E為正方形ABCD的BC邊的中點(diǎn),動(dòng)點(diǎn)F在對(duì)角線AC上運(yùn)動(dòng),連接BF、EF.設(shè)AF=x,△BEF的周長(zhǎng)為y,那么能表示y與x的函數(shù)關(guān)系的圖象大致是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD的對(duì)角線相交于點(diǎn)O,能判定四邊形是正方形的條件是(    )
A.AC=BD,AB=CD,AB∥CDB.AO=BO=CO=DO,AC⊥BD
C.AD∥BC,∠A=∠CD.AO=CO,BO=DO,AB=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題是真命題的是【   】
A.如果|a|=1,那么a=1B.一組對(duì)邊平行的四邊形是平行四邊形
C.如果a是有理數(shù),那么a是實(shí)數(shù)D.對(duì)角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

依次連接菱形各邊中點(diǎn)所得到的四邊形是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)長(zhǎng)方形的長(zhǎng)與寬分別為cm和16cm,繞它的對(duì)稱中心旋轉(zhuǎn)一周所掃過的面積是 ;旋轉(zhuǎn)90度時(shí),掃過的面積是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對(duì)角線交于點(diǎn)D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長(zhǎng)為    ▲   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形中,,交 的延長(zhǎng)線于,若厘米,則           厘米.

查看答案和解析>>

同步練習(xí)冊(cè)答案