(2013•湖州)如圖,已知直線a,b被直線c所截,a∥b,∠1=60°,則∠2的度數(shù)為(  )
分析:根據(jù)兩直線平行,同位角相等求出∠3,再根據(jù)鄰補(bǔ)角的定義解答.
解答:解:∵a∥b,∠1=60°,
∴∠3=∠1=60°,
∴∠2=180°-∠1=180°-60°=120°.
故選C.
點(diǎn)評(píng):本題考查了平行線的性質(zhì),鄰補(bǔ)角的定義,是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則
AD
AB
的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,則cosB的值為
5
13
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=
4
5
,反比例函數(shù)y=
k
x
(k>0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=12,求OA的長和點(diǎn)C的坐標(biāo);
(3)在(2)中的條件下,過點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以P、O、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案