【題目】慶元大道兩側(cè)需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )

A. 200B. 300C. 400D. 500

【答案】B

【解析】

此題只要能求出25小時的一次函數(shù)解析式,從而求出當(dāng)x=2時的縱坐標(biāo),除以2即可.

解:從圖象可以知25時的函數(shù)圖象經(jīng)過(4,1600)(5,2100)

設(shè)該時段的一次函數(shù)解析式為y=kx+b(x≥2),依題意,將點(diǎn)(4,1600)(5,2100)分別代入,

可列方程組有

解得:

∴一次函數(shù)的解析式為:y=500x-400

∴當(dāng)x=2時,解得y=600

∴前兩小時每小時完成的綠化面積是600÷2=300(m2)

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為6的等邊ABC中,點(diǎn)D、E分別在AC、BC邊上,DEAB,EC=2

1)若將DEC繞點(diǎn)C旋轉(zhuǎn)∠αα360°),得到D′E′C,連接AD,BE,在旋轉(zhuǎn)過程中,ADBE又怎樣的數(shù)量關(guān)系?并說明理由;

2)在(1)旋轉(zhuǎn)過程中,邊D′E′的中點(diǎn)為P,連接AP,當(dāng)AP最大時,求AD′的值.

3)若點(diǎn)M為等邊ABC內(nèi)一點(diǎn),且MA=4a,MB=5aMC=3a,求∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點(diǎn)H.

(1)如圖,①在圖中找出與∠DBA相等的角,并說明理由;

②若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC,∠A=50°,直接寫出∠DHE的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1;

2;

3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(0,1),(0,2),(12),(1,3),(03),(﹣1,3,根據(jù)這個規(guī)律探索可得,第90個點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:

第一步:(計(jì)算)嘗試滿足,使其中,都為正整數(shù).你取的正整數(shù)__________;

第二步:(畫長為的線段)以第一步中你所取的正整數(shù),為兩條直角邊長畫,使為原點(diǎn),點(diǎn)落在數(shù)軸的正半軸上,,則斜邊的長即為

請?jiān)谙旅娴臄?shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)

第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn),并描述第三步的畫圖步驟:__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形中,為邊的中點(diǎn),與對角線交于點(diǎn),過于點(diǎn),

,求的長;

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y1的圖象與函數(shù)y2kx+b的圖象交于點(diǎn)A(﹣1,aB(﹣8+a1

1)求函數(shù)yykx+b的表達(dá)式;

2)觀察圖象,直接寫出不等式kx+b的解.

查看答案和解析>>

同步練習(xí)冊答案