如圖已知點A在直線l外,點B,C在直線l上.

(1)點P是△ABC內(nèi)一點,求證:∠P>∠A;

(2)試判斷在△ABC外,又和點A在直線l同側(cè),是否存在一點Q,使∠BQC>∠A,并證明你的結(jié)論.

答案:
解析:

  (1)延長BP交AC于D,則∠BPC>∠BDC,∠BDC>∠A,故∠BPC>∠A;

  (2)在直線l同側(cè),且在△ABC外,存在點Q,使得∠BQC>∠A成立.此時,只需在AB外,靠近AB中點處取點Q,則∠BQC>∠A.證明略.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點O在直線l上,
AD
是以O(shè)為圓心的某圓上的一段弧,∠AOD=90°,分別過A、D兩點作l的垂線,垂足為B、C.
(1)當(dāng)點A、D在直線l的同側(cè)時,試探索線段AB、BC、CD之間有怎樣的等量關(guān)系?請寫出你的結(jié)論并予以證明;當(dāng)點A、D在直線l的兩側(cè)時,且AB≠CD時,線段AB、BC、CD之間又有怎樣的等量關(guān)系?請直接寫出結(jié)論(不必證明).精英家教網(wǎng)
(2)如圖,
精英家教網(wǎng)
當(dāng)點A、D在直線l的同側(cè),如果AB=3,CD=4,點M是
AD
的中點,MN⊥BC,垂足為點N,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且AC=6,連結(jié)BC,點D為BC的中點.已知點E在直線AC上,△CDE與△ACB相似,則線段AE的長為
3或
2
3
或9或
34
3
3或
2
3
或9或
34
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,已知A,B為直線l上兩點,點C為直線l上方一動點,連接AC、BC,分別以AC、BC為直角邊向△ABC外作等腰直角△CAD和等腰直角△CBE,滿足∠CAD=∠CBE=90°,過點D作DD1⊥l于點D1,過點E作EE1⊥l于點E1
(1)如圖②,當(dāng)點E恰好在直線l上時,試說明DD1=AB;
(2)在圖①中,當(dāng)D,E兩點都在直線l的上方時,試探求三條線段DD1,EE1,AB之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點O在直線AB上一點,將一直角三角板如圖1放置,一直角邊ON在直線AB上,另一直角邊OM⊥AB于O,射線OC在∠AOM內(nèi)部.

(1)如圖2,將三角板繞著O點順時針旋轉(zhuǎn),當(dāng)∠AON=∠CON時,試判斷OM是否平分∠BOC,并說明理由;
(2)若∠AOC=80゜時,三角板OMN繞O點順時針旋轉(zhuǎn)一周,每秒旋轉(zhuǎn)5゜,多少秒后∠MOC=∠MOB?
(3)在(2)的條件下,如圖3,旋轉(zhuǎn)三角板使ON在∠BOC內(nèi)部,另一邊OM在直線AB的另一側(cè),下面兩個結(jié)論:①∠NOC-∠BOM的值不變;②∠NOC+∠BOM的值不變.選擇其中一個正確的結(jié)論說明理由.

查看答案和解析>>

同步練習(xí)冊答案