【題目】如圖所示,為等邊三角形,,,于R,于S,則四個(gè)結(jié)論正確的是
點(diǎn)P在的平分線(xiàn)上;
;
;
≌.
A. 全部正確 B. 僅和正確 C. 僅正確 D. 僅和正確
【答案】A
【解析】
因?yàn)?/span>△ABC為等邊三角形,根據(jù)已知條件可推出Rt△ARP≌Rt△ASP,則AR=AS,故(2)正確,∠BAP=∠CAP,所以AP是等邊三角形的頂角的平分線(xiàn),故(1)正確,根據(jù)等腰三角形的三線(xiàn)合一的性質(zhì)知,AP也是BC邊上的高和中線(xiàn),即點(diǎn)P是BC的中點(diǎn),因?yàn)?/span>AQ=PQ,所以點(diǎn)Q是AC的中點(diǎn),所以PQ是邊AB對(duì)的中位線(xiàn),有PQ∥AB,故(3)正確,又可推出△BRP≌△QSP,故(4)正確.
∵PR⊥AB于R,PS⊥AC于S
∴∠ARP=∠ASP=90°
∵PR=PS,AP=AP
∴Rt△ARP≌Rt△ASP
∴AR=AS,故(2)正確,∠BAP=∠CAP
∴AP是等邊三角形的頂角的平分線(xiàn),故(1)正確
∴AP是BC邊上的高和中線(xiàn),即點(diǎn)P是BC的中點(diǎn)
∵AQ=PQ
∴點(diǎn)Q是AC的中點(diǎn)
∴PQ是邊AB對(duì)的中位線(xiàn)
∴PQ∥AB,故(3)正確
∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP
∴△BRP≌△QSP,故(4)正確
∴全部正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,,F是AD的中點(diǎn),作,垂足E在線(xiàn)段上,連接EF、CF,則下列結(jié)論;;,中一定成立的是______ 把所有正確結(jié)論的序號(hào)都填在橫線(xiàn)上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知BC∥OA,∠B=∠A=100°,試回答下列問(wèn)題:
(1)如圖①所示,試說(shuō)明OB∥AC;
(2)如圖②,若點(diǎn)E,F在BC上,且滿(mǎn)足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線(xiàn)上填上答案即可);
(3)在(2)的條件下,若平行移動(dòng)AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,在平行移動(dòng)AC的過(guò)程中,若使∠OEB=∠OCA,此時(shí)∠OCA的度數(shù)等于________(在橫線(xiàn)上填上答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.
(1)當(dāng)t為何值時(shí),PQ∥AB?
(2)當(dāng)t=3時(shí),求△QMC的面積;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程有兩個(gè)正整數(shù)根是正整數(shù)的三邊a、b、c滿(mǎn)足,,.
求:的值;
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結(jié)論;
(2)當(dāng)四邊形ABCD的對(duì)角線(xiàn)滿(mǎn)足_____條件時(shí),四邊形EFGH是矩形(不證明)
(3)你學(xué)過(guò)的哪種特殊四邊形的中點(diǎn)四邊形是矩形?_____(不證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次向左移動(dòng)3個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向右移動(dòng)12個(gè)單位長(zhǎng)度至E點(diǎn),…,依此類(lèi)推.這樣第_____次移動(dòng)到的點(diǎn)到原點(diǎn)的距離為2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD,AB∥DC,∠B=55°,∠1=85°,∠2=40°
(1)求∠D的度數(shù);
(2)求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com