【題目】如圖,直線 與直線 相交于點P(1,b)

(1)求b,m的值
(2)垂直于x軸的直線 與直線 分別相交于C,D,若線段CD長為2,求a的值

【答案】
(1)

解:把點P(1,b)代入y=2x+1,得b=2+1=3,

把點P(1,3)代入y=mx+4,得m+4=3,

∴m=-1.


(2)

解:直線x=a與直線l1的交點C為(a,2a+1),與直線l2的交點D為(a,-a+4).

∵CD=2,

∴|2a+1-(-a+4)|=2,

即|3a-3|=2,

∴3a-3=2或3a-3=-2,

∴a=或a=.


【解析】(1)把點P(1,b)分別代入l1和l2,得到b和m的值.
(2)將直線x=a分別與直線l1、l2聯(lián)立求出C和D的坐標(biāo),根據(jù)CD=2,列出關(guān)于a的方程求出a的值即可.
【考點精析】本題主要考查了確定一次函數(shù)的表達(dá)式的相關(guān)知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,EAB的中點,且DEAB于點E,∠CAD:∠EAD=1:2,則BBAC的度數(shù)為(

A. 30°,60° B. 32°,58° C. 36°,54° D. 20°,70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使BPDCQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=CAB=8厘米,BC=6厘米,點DAB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設(shè)運動時間為t(秒)(0≤t≤3).

1)用的代數(shù)式表示PC的長度;

2)若點P、Q的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由;

3)若點P、Q的運動速度不相等,當(dāng)點Q的運動速度a為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點,記頂點都是整點的三角形為整點三角形.如圖,已知整點A(2,3),B(4,4),請在所給網(wǎng)格區(qū)域(含邊界)上按要求畫整點三角形.
(1)在圖1中畫一個△PAB,使點P的橫、縱坐標(biāo)之和等于點A的橫坐標(biāo);

(2)在圖2中畫一個△PAB,使點P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,射線APABC的外側(cè),點B關(guān)于AP的對稱點為D,連接CD交射線AP于點E,連接BE.

(1)根據(jù)題意補全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=ACE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過點EEF∥BC,交直線AC于點F,連接CE.

(1)如圖①,若∠BAC=60°,按邊分類:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如圖②,當(dāng)點D在線段CB上移動時,判斷△CEF的形狀并證明;

②當(dāng)點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應(yīng)的圖形,寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2 +cosα=0有兩個相等的實數(shù)根,則銳角α為(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

同步練習(xí)冊答案