【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱(chēng)點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.

(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示 的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.

【答案】
(1)

證明:由對(duì)稱(chēng)得AE=FE,∴∠EAF=∠EFA,

∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,

∴∠FGA=∠EFG,∴EG=EF.

∴AE=EG.


(2)

解:設(shè)AE=a,則AD=na,

當(dāng)點(diǎn)F落在AC上時(shí)(如圖1),

由對(duì)稱(chēng)得BE⊥AF,

∴∠ABE+∠BAC=90°,

∵∠DAC+∠BAC=90°,

∴∠ABE=∠DAC,

又∵∠BAE=∠D=90°,

∴△ABE~△DAC ,

∵AB=DC,∴AB2=AD·AE=na·a=na2,

∵AB>0,∴AB= .

.


(3)

解:設(shè)AE=a,則AD=na,由AD=4AB,則AB= .

當(dāng)點(diǎn)F落在線(xiàn)段BC上時(shí)(如圖2),EF=AE=AB=a,

此時(shí) ,∴n=4.

∴當(dāng)點(diǎn)F落在矩形外部時(shí),n>4.

∵點(diǎn)F落在矩形的內(nèi)部,點(diǎn)G在AD上,

∴∠FCG<∠BCD,∴∠FCG<90°,

若∠CFG=90°,則點(diǎn)F落在AC上,由(2)得 ,∴n=16.

若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,

∵∠FAG+∠AGF=90°,

∴∠CGD=∠FAG=∠ABE,

∵∠BAE=∠D=90°,

∴△ABE~△DGC,

,

∴AB·DC=DG·AE,即( 2=(n-2)a·a.

解得 (不合題意,舍去),

∴當(dāng)n=16或 時(shí),以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形.


【解析】(1)因?yàn)镚F⊥AF,由對(duì)稱(chēng)易得AE=EF,則由直角三角形的兩個(gè)銳角的和為90度,且等邊對(duì)等角,即可證明E是AG的中點(diǎn);(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC , 則 ,因?yàn)锳B=DC,且DA,AE已知表示出來(lái)了,所以可求出AB,即可解答;(3)求以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形時(shí)的n,需要分類(lèi)討論,一般分三個(gè),∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點(diǎn)F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進(jìn)行分析解答.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由.

(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,E是直線(xiàn)AB,CD內(nèi)部一點(diǎn),ABCD,連接EA,ED

1)探究猜想:①若∠A=30°,D=40°,則∠AED等于多少度?

②若∠A=20°D=60°,則∠AED等于多少度?

③猜想圖1中∠AED,EABEDC的關(guān)系并證明你的結(jié)論.

2)拓展應(yīng)用:如圖2,線(xiàn)段FE與長(zhǎng)方形ABCD的邊AB交于點(diǎn)E,與邊CD 交于點(diǎn)F.圖2中①②分別是被線(xiàn)段FE隔開(kāi)的2個(gè)區(qū)域(不含邊界),P是位于以上兩個(gè)區(qū)域內(nèi)的一點(diǎn),猜想∠PEB,PFCEPF的關(guān)系(不要求說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶(hù)居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶(hù)居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請(qǐng)你通過(guò)樣本估計(jì)總體中的中等用水量家庭大約有多少戶(hù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的中線(xiàn), 是線(xiàn)段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) ,連結(jié)

(1)如圖1,當(dāng)點(diǎn) 重合時(shí),求證:四邊形 是平行四邊形;
(2)如圖2,當(dāng)點(diǎn) 不與 重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng) 于點(diǎn) ,若 ,且 .當(dāng) , 時(shí),求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有下列說(shuō)法:①若DE∥AB,則∠DEF+∠EFB=180;

②能與∠DEF構(gòu)成內(nèi)錯(cuò)角的角的個(gè)數(shù)有2個(gè);③能與∠BFE構(gòu)

成同位角的角的個(gè)數(shù)有2個(gè);④能與∠C構(gòu)成同旁?xún)?nèi)角的角的個(gè)數(shù)有4個(gè).其中結(jié)論正確的是( )

A. ①② B. ③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC,連結(jié)OB,D為OB的中點(diǎn)。點(diǎn)E是線(xiàn)段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF。已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線(xiàn)段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒。

(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E在線(xiàn)段AB上移動(dòng)的過(guò)程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠DEF的值;
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分面積之比為1:2時(shí),求相應(yīng)t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,CE,BE的交點(diǎn)為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE和∠DCE的平分線(xiàn),交點(diǎn)為E1

第二次操作,分別作∠ABE1和∠DCE1的平分線(xiàn),交點(diǎn)為E2

第三次操作,分別作∠ABE2和∠DCE2的平分線(xiàn),交點(diǎn)為E3……

n次操作,分別作∠ABEn1和∠DCEn1的平分線(xiàn),交點(diǎn)為En.

(1)如圖①,求證:∠EBC;

(2)如圖②,求證:∠E1E;

(3)猜想:若∠Enb°,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A(2018,0),B(0,2014),以 AB 為斜邊作等腰RtABC,則 C點(diǎn)坐標(biāo)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案