證明題:說明理由(7分)如圖,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于點D,若BD=CD.求證:AD平分∠BAC.

  證明:∵BE⊥AC于E,CF⊥AB于F
  ∴∠BFD=∠CED=90°
  又∵∠BDF=∠CDE(    ) BD=CD
  ∴△BDF≌△CDE(    )
  ∴DF=DE(    )
  ∴AD平分∠BAC(    ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點,P為直線AB上一點,過點P做BC的平行線交直線BT于點E,交直線AC于點F.
精英家教網(wǎng)精英家教網(wǎng)
(1)當(dāng)點P在線段AB上時(如圖).求證:PA•PB=PE•PF;
(2)當(dāng)點P為線段BA延長線上一點時,第(1)題的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
(3)若AB=4
2
,cos∠EBA=
1
3
,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,PA切⊙O于A點,割線PCB交⊙O于C、B兩點,D是線段BP上一點,且PD2=PB•PC,直線AD交⊙O于E點.
(1)求證:AD平分∠BAC;
(2)求證:AB•AC=AD•AE;
(3)若把題中條件“D是線段BP上一點”改為“D是線段BP延長線上一點”(如圖2),則題(2)中的結(jié)論還成立嗎?若成立,請給出證明,若不成立,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•沐川縣二模)本題為選做題,從甲乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
甲題:已知關(guān)于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)證明:這個方程有兩個不相等的實根;
(2)如果這個方程的兩根分別為x1,x2,且(x1-5)(x2-5)=5m,求m的值.
乙題:如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點D,過D作AC的垂線,垂足為E.
(1)證明:BD=DC;
(2)DE是否是⊙O的切線?若是,請給出證明;若不是,請說明理由.
我選做的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進(jìn)行適當(dāng)?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習(xí)冊答案