1.請(qǐng)閱讀材料并填空:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連結(jié)PP′.
根據(jù)李明同學(xué)的思路,進(jìn)一步思考后可求得∠BPC=____°,等邊△ABC的邊長(zhǎng)為____.
2.請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
1.150°,
2.如圖,將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得△BP′A,則△BPC≌△BP′A. ……3分
∴AP′=PC=1,BP=BP′=.
連結(jié)PP′,在Rt△BP′P中,∵ BP=BP′=,∠PBP′=90°,
∴ PP′=2,∠BP′P=45°. …………4分
在△AP′P中, AP′=PC=1,PP′=2,AP=,∵ 12+22=()2,即AP′ 2+PP′ 2=AP2.
∴ △AP′P是直角三角形,即∠AP′P=90°. …………5分
∴∠AP′B=∠AP′P+∠BP′P=135°.
∴ ∠BPC=∠AP′B=135°. …………6分
過(guò)點(diǎn)B作BE⊥AP′交AP′的延長(zhǎng)線于點(diǎn)E.
則∠EP′B=45°,∴ EP′=BE=BP′=1,∴AE=2.
∴在Rt△ABE中,由勾股定理,得AB=. …………8分
∴∠BPC=135°,正方形邊長(zhǎng)為.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
3 |
5 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
1.請(qǐng)閱讀材料并填空:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連結(jié)PP′.
根據(jù)李明同學(xué)的思路,進(jìn)一步思考后可求得∠BPC=____°,等邊△ABC的邊長(zhǎng)為____.
2.請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com