【題目】汽車在行駛的過程中速度往往是變化的,如圖表示一輛汽車的速度隨時間變化而變化的情況.
(1)汽車從出發(fā)到最后停止共經過了多少時間?它的最高時速是多少?
(2)汽車在哪些時間段保持勻速行駛?時速分別是多少?
(3)汽車出發(fā)8min到10min之間可能發(fā)生了什么情況?
(4)求汽車從出發(fā)后第18分鐘到第22分鐘行駛的路程.
【答案】(1)汽車從出發(fā)到最后停止共經過了24min,它的最高時速是90km/h;(2)汽車在2min到6min,18min到22min保持勻速行駛,時速分別是30km/h和90km/h;(3)汽車出發(fā)8min到10min之間處于靜止狀態(tài),可能是遇到紅燈等情況;(4)6km.
【解析】
利用函數圖象中橫、縱坐標的意義分別求解即可.
解:(1)汽車從出發(fā)到最后停止共經過了24min,它的最高時速是90km/h;
(2)汽車在2min到6min,18min到22min保持勻速行駛,時速分別是30km/h和90km/h;
(3)汽車出發(fā)8min到10min之間處于靜止狀態(tài),可能是遇到紅燈等情況;
(4)汽車從出發(fā)后第18分鐘到第22分鐘行駛的路程=(km)
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.
(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1__ __S2+S3;(填“>”“=”或“<”)
(2)寫出圖中的三對相似三角形,并選擇其中一對進行證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數).
(參考數據:sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖中是拋物線型拱橋,P處有一照明燈,水面OA寬4m,從O,A兩處觀測P處,仰角分別為α,β,tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標系.
(1)求點P的坐標;
(2)水面上升1m,水面寬多少(取1.41,結果精確到0.1m)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,沿DE折疊長方形ABCD的一邊,使點C落在AB邊上的點F處,若AD=8,且△AFD的面積為60,則△DEC的面積為( 。
A.
B.
C. 18
D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知第一象限內的點A在反比例函數y=的圖象上,第二象限內的點B在反比例函數y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -4 C. - D. -2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ACB與∠CAB的平分線交于點P,PD⊥AB于點D,若△APC與△APD的周長差為,四邊形BCPD的周長為12+,則BC等于______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,平面直角坐標系xOy中,四邊形OABC是矩形,點A,C的坐標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線y=-x+b交折線O-A-B于點E.
(1)在點D運動的過程中,若△ODE的面積為S,求S與b的函數關系式,并寫出自變量的取值范圍;
(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;
(3)問題(2)中的四邊形DMEN中,ME的長為____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com