【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),AB為轉(zhuǎn)盤(pán)直徑,如圖所示,并規(guī)定:顧客消費(fèi)100元(含100元)以上,就能獲得一次轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)9折、8折、7折區(qū)域,顧客就可以獲得相應(yīng)的優(yōu)惠.
(1)某顧客正好消費(fèi)99元,是否可以獲得相應(yīng)的優(yōu)惠.
(2)某顧客正好消費(fèi)120元,他轉(zhuǎn)一次轉(zhuǎn)盤(pán)獲得三種打折優(yōu)惠的概率分別是多少?
【答案】(1)不能;見(jiàn)解析。(2),,
【解析】
(1)根據(jù)題意,易得答案;
(2)根據(jù)題意乙顧客消費(fèi)120元,能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).根據(jù)概率的計(jì)算方法,可得答案.
解:(1)根據(jù)規(guī)定消費(fèi)100元(含100元)以上才能獲得一次轉(zhuǎn)盤(pán)的機(jī)會(huì),而99元小于100元,故不能獲得轉(zhuǎn)盤(pán)的機(jī)會(huì);
(2)某顧客正好消費(fèi)120元,超過(guò)100元,可以獲得轉(zhuǎn)盤(pán)的機(jī)會(huì).
若獲得9折優(yōu)惠,則概率;
若獲得8折優(yōu)惠,則概率;
若獲得7折優(yōu)惠,則概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)已知購(gòu)買(mǎi)1個(gè)足球和1個(gè)籃球共需130元,購(gòu)買(mǎi)2個(gè)足球和1個(gè)籃球共需180元.
(1)求每個(gè)足球和每個(gè)籃球的售價(jià);
(2)如果某校計(jì)劃購(gòu)買(mǎi)這兩種球共54個(gè),總費(fèi)用不超過(guò)4000元,問(wèn)最多可買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,周長(zhǎng)為a的圓上有且僅有一點(diǎn)A在數(shù)軸上,點(diǎn)A所表示的數(shù)為1.該圓沿著數(shù)軸向右滾動(dòng)一周后A對(duì)應(yīng)的點(diǎn)為B,且滾動(dòng)中恰好經(jīng)過(guò)4個(gè)整數(shù)點(diǎn)(不包括A、B兩點(diǎn)),則a的取值范圍為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),甲車(chē)勻速前往B地,到達(dá)B地立即以另一速度按原路勻速返回到A地;乙車(chē)勻速前往A地,設(shè)甲、乙兩車(chē)距A地的路程為y(千米),甲車(chē)行駛的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示
(1)求甲車(chē)從A地到達(dá)B地的行駛時(shí)間;
(2)求甲車(chē)返回時(shí)y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)求乙車(chē)到達(dá)A地時(shí)甲車(chē)距A地的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,F是AD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為6,△ABC是⊙O的內(nèi)接三角形,連接OB,OC,若∠BAC與∠BOC互補(bǔ),則線段BC的長(zhǎng)為( )
A.
B.3
C.
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B坐標(biāo)分別為A(O,a)、B(b,a),且a、b滿足:,現(xiàn)同時(shí)將點(diǎn)A、B分別向下平移3個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A、B的對(duì)應(yīng)點(diǎn)C、D,連接AC、BD、AB.
(1)求點(diǎn)C、D的坐標(biāo);
(2)在y軸上是否存在點(diǎn)M,連接MC、MD,使三角形MCD的面積為30?若存在這樣的點(diǎn),求出點(diǎn)M的坐標(biāo);若不存在,試說(shuō)明理由.
(3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PA、PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B、D重合),的值是否發(fā)生變化,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)50角后得到△AB′C′的位置,若此時(shí)恰有CC′∥AB,則∠CAB′的度數(shù)為( )
A.15°
B.40°
C.50°
D.65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)觀察圖形,認(rèn)真分析下列各式,然后解答問(wèn)題.
OA=()2+1=2,S1=;
OA=()2+1=3,S2=;
OA=()2+1=4,S3=;
…
求:(1)請(qǐng)用含有n(n是正整數(shù))的等式表示上述變化規(guī)律;
(2)推算出OA10的長(zhǎng);
(3)求出S+S+S+…+S的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com