作业宝如圖,△ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF.
(1)請(qǐng)說(shuō)明:DE=DF;
(2)請(qǐng)說(shuō)明:BE2+CF2=EF2
(3)若BE=6,CF=8,求△DEF的面積(直接寫(xiě)結(jié)果).

(1)證明:連接AD,
∵等腰直角三角形ABC,
∴∠C=∠B=45°,
∵D為BC的中點(diǎn),
∴AD⊥BC,AD=BD=DC,AD平分∠BAC,
∴∠DAC=∠BAD=45°=∠B,∠ADC=90°,
∵DE⊥DF,
∴∠EDF=90°,
∴∠ADF+∠FDC=90°,∠FDC+∠BDE=90°,
∴∠BDE=∠ADF,
在△BDE和△ADF中
,
∴△BDE≌△ADF,
∴DE=DF.

(2)證明:∵△BDE≌△ADF,
∴BE=AF,
∵∠EDF=∠ADC=90°,
∴∠EDA+∠ADF=∠ADF+∠FDC=90°,
∴∠EDA=∠FDC,
在△ADE和△CDF中
,
∴△ADE≌△CDF,
∴CF=AE,
∴EF2=AE2+AF2=BE2+CF2,
即BE2+CF2=EF2

(3)解:EF2=BE2+CF2=100,
∴EF=10,
根據(jù)勾股定理DE=DF=5
△DEF的面積是DE×DF=×5×5=25.
答:△DEF的面積是25.
分析:(1)連接AD,根據(jù)等腰直角三角形性質(zhì)和直角三角形斜邊上中線(xiàn)性質(zhì)求出∠B=∠C=∠BAD=∠DAC=45°,AD=BD,求出∠BDE=∠ADF,根據(jù)ASA證△BDE≌△ADF即可;
(2)根據(jù)AAS證△ADE≌△CDF,推出AE=CF,根據(jù)勾股定理求出即可;
(3)求出EF長(zhǎng),根據(jù)勾股定理求出DE和DF,根據(jù)三角形的面積公式求出即可.
點(diǎn)評(píng):本題考查了等腰直角三角形性質(zhì),勾股定理,三角形的面積,直角三角形斜邊上的中線(xiàn)性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是①小題構(gòu)造三角形ADF,證△BDE和△ADF全等,②小題求出CF=AE,目比較典型,但有點(diǎn)難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,BC是斜邊,點(diǎn)P是△ABC內(nèi)一定點(diǎn),延長(zhǎng)BP至P′,將△ABP繞點(diǎn)A旋轉(zhuǎn)后,與△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,△ABC是等腰三角形,AB=AC,D為直線(xiàn)BC上一點(diǎn),DE⊥AC,DF⊥AB,CH⊥AB,
(1)如圖(1)若D為BC的中點(diǎn),求證:DE+DF=CH.
(2)如圖(2)若D為BC延長(zhǎng)線(xiàn)上一點(diǎn),其他條件不變,線(xiàn)段DE.DF.CH 之間有何數(shù)量關(guān)系,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,若AB=2,則線(xiàn)段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•資陽(yáng))如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個(gè)圖(不添加輔助線(xiàn))可以說(shuō)明下列哪一個(gè)命題是假命題?( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等腰直角三角形,D為斜邊AB上任意一點(diǎn)(不與A,B重合),連接CD,作EC⊥DC,且EC=DC,連接AE.
(1)求證:∠E+∠ADC=180°.
(2)猜想:當(dāng)點(diǎn)D在何位置時(shí),四邊形AECD是正方形?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案