【題目】計(jì)算

1)﹣2+7(3)2

2(4)×5+(120)÷6

39(12)+35.5×45.5×4

4)﹣22

【答案】16;(2)﹣40;(31;(4

【解析】

1)直接利用有理數(shù)的加減運(yùn)算法則計(jì)算得出答案;

2)直接利用有理數(shù)的混合運(yùn)算法則計(jì)算得出答案;

3)直接利用乘法分配律進(jìn)而得出答案;

4)直接利用有理數(shù)的混合運(yùn)算法則計(jì)算得出答案.

解:(1)﹣2+7(3)2

=2+7+32

=6

2(4)×5+(120)÷6

=2020

=40;

39(12)+35.5×45.5×4

=(9)×(12)+4×(35.55.5)

=10811+120

=1

4)﹣22

=4(9+24)÷4

=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“愛(ài)滿揚(yáng)州”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

(1)這50名同學(xué)捐款的眾數(shù)為元,中位數(shù)為元;
(2)求這50名同學(xué)捐款的平均數(shù);
(3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)D、點(diǎn)E分別在AB、AC上,BD=AE,連接BE、CD交于點(diǎn)P,作EHCDH

1)求證:CAD≌△BCE;(2)求證:PE=2PH;(3)若PB=PH,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周老師為鍛煉身體一直堅(jiān)持步行上下班。已知學(xué)校到周老師家總路程為2000米,一天,周老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時(shí),正好遇到一個(gè)朋友,停下又聊了20分鐘,之后以110/分的速度走回了家.周老師回家過(guò)程中,離家的路程S(米)與所用時(shí)間t(分)之間的關(guān)系如圖所示.

1)求a的值;

2b= ,c= .

3)求周老師從學(xué)校到家的平均速度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,AB=6,點(diǎn)C,D在⊙O上,且CD平分∠ACB,∠CAB=60°.

(1)求BC及陰影部分的面積;
(2)求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.

(1)點(diǎn)D在邊AB上時(shí),證明:AB=FA+BD;

(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)畫出圖形并直接寫出正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B是數(shù)軸上的兩個(gè)點(diǎn),點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B在點(diǎn)A右側(cè),距離A點(diǎn)12個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)填空:①數(shù)軸上點(diǎn)B表示的數(shù)為   ;

②數(shù)軸上點(diǎn)P表示的數(shù)為   (用含t的代數(shù)式表示).

2)設(shè)APPB的中點(diǎn)分別為點(diǎn)MN,在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,線段M N的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,求出線段M N的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=∠COD,∠AOD=110°,∠BOC=70°,則以下結(jié)論正確的有(  )

①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x-x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)Cx軸正半軸上,且OC=3AO,過(guò)點(diǎn)ABC的平行線l

1)求直線BC的解析式;

2)作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)D,一動(dòng)點(diǎn)PC點(diǎn)出發(fā)按某一路徑運(yùn)動(dòng)到直線l上的點(diǎn)M,再沿垂直BC的方向運(yùn)動(dòng)到直線BC上的點(diǎn)N,再沿某一路徑運(yùn)動(dòng)到D點(diǎn),求點(diǎn)P運(yùn)動(dòng)的最短路徑的長(zhǎng)以及此時(shí)點(diǎn)N的坐標(biāo);

3)如圖2,將AOB繞點(diǎn)B旋轉(zhuǎn),使得A′O′BC,得到A′O′B,將A′O′B沿直線BC平移得到A″O″B′,連接A″、B″、C,是否存在點(diǎn)A″,使得A″B′C為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)A″的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案