【題目】如圖,邊長12的正方形ABCD中,有一個小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF=3,則小正方形的邊長為何?(
A.
B.
C.5
D.6

【答案】B
【解析】解:在△BEF與△CFD中 ∵∠1+∠2=∠2+∠3=90°,
∴∠1=∠3
∵∠B=∠C=90°,
∴△BEF∽△CFD,
∵BF=3,BC=12,
∴CF=BC﹣BF=12﹣3=9,
又∵DF= = =15,
= ,即 = ,
∴EF=
故選B.

【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在彈性限度內(nèi),彈簧掛上物體后會伸長,測得彈簧的長度與所掛物體的質(zhì)量之間有如下表關(guān)系:

下列說法不正確的是( )

A. 的增大而增大 B. 所掛物體質(zhì)量每增加彈簧長度增加

C. 所掛物體為時,彈簧長度為 D. 不掛重物時彈簧的長度為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問題:

1)汽車在前9分鐘內(nèi)的平均速度是多少?

2)汽車在中途停了多長時間?

316≤t≤30時,求St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知小華家、小夏家、小紅家及學校在同一條大路旁,一天,他們放學后從學校出發(fā),先向南行1000m到達小華家A處,繼續(xù)向北行3000m到達小紅B家處,然后向南行6000m到小夏家C處.

(1)以學校以原點,以向南方向為正方向,用1個單位長度表示1000m,請你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;

(2)小紅家在學校什么位置?離學校有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了豐富學生課余活動開展了一次“校園歌手大獎賽”的歌詠比賽,共有18名同學入圍,他們的決賽成績?nèi)缦卤恚?/span>

成績(分)

9.40

9.50

9.60

9.70

9.80

9.90

人數(shù)

2

3

5

4

3

1

則入圍同學決賽成績的中位數(shù)和眾數(shù)分別是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O,D,E三點在同一直線上,∠AOB=90°.

(1)圖中∠AOD的補角是_____,∠AOC的余角是_____;

(2)如果OB平分∠COE,∠AOC=35°,請計算出∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 中, ,且

)試說明是等腰三角形.

)已知,如圖,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,當其中一點到達終點時整個運動都停止.設(shè)點運動的時間為(秒).

①若的邊與平行,求的值.

②若點是邊的中點,問在點運動的過程中, 能否成為等腰三角形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案