【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB上的一點,連接CD,CE∥AB,BE∥CD,且CE=AD.
(1)求證:四邊形BDCE是菱形;
(2)過點E作EF⊥BD,垂足為點F,若點F是BD的中點,EB=6,求BC的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點和點.
(1)求此拋物線的函數(shù)表達式和直線的函數(shù)表達式;
(2)動點在第一象限內(nèi)的拋物線上.
①如圖1,連接,,當(dāng)的面積和的面積相等時,求出點的橫坐標(biāo);
②如圖2,連接,求的面積的最大值及此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù) (x>0)的圖象交于點A(2,3)。
(1)求正比例函數(shù)與反比例函數(shù)的解析式;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若B、D、F在AN上,C、E在AM上,且AB=BC=CD=ED=EF,∠A=20°,則∠FEB= __________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出下列結(jié)論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CF切⊙O于點C,BF⊥CF于點F,點D在⊙O上,CD交AB于點E,∠BCE=∠BCF.
(1)求證:弧AC=弧AD;
(2)點G在⊙O上,∠GCD=∠FCD,連接DO并延長交CG于點H,求證:CH=GH;
(3)在(2)的條件下,連接AG,AG=3,CF=2,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點A位于第一象限,點O為坐標(biāo)原點,點B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO.AB分別交于點C.D,點C為AO的中點,連接OD.CD.若S△OBD=3,則S△OCD為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)與x軸有交點.若關(guān)于x的一元二次方程的兩根分別是 ,。
(1)求二次函數(shù)的解析式;
(2)設(shè)A(a,c)和B(b,c)是拋物線上兩點,且AB=4,a<b,求a、b、c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①4ac<b2;
②a>b>c;
③一次函數(shù)y=ax+c的圖象不經(jīng)第四象限;
④m(am+b)+b<a(m是任意實數(shù));
⑤3b+2c>0.
其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com