【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過C作CE垂直于BD的延長(zhǎng)線,垂足為E,如圖1

(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖2,求 的值;

(3)如圖3,連接AE.若AE=EC,求 的值.

【答案】
(1)

解:∵CE⊥BD,

∴∠A=∠E=90°,

∵∠ADB=∠EDC,

∴△BAD∽△CED,

,

∴ADCD=BDDE;


(2)

解:設(shè)CD=AD=a,則AB=AC=2a.

在Rt△ABD中,由勾股定理得:BD= a,

由(1)知,△BAD∽△CED,

,

,

解得:CE= a,

= =


(3)

解:如圖3,延長(zhǎng)CE、BA相交于點(diǎn)F.

∵BE是∠ABC的角平分線,且BE⊥CF

在△BEC和△BEF中, ,

∴△BEC≌△BEF,

∴CE=EF,

∴CF=2CE

又∵∠ABD+∠ADB=∠CDE+∠ACF=90°,

且∠ADB=∠CDE,

∴∠ABD=∠ACF

∵AB=AC,∠BAD=∠CAF=90°,

在△ABD和△ACF中, ,

∴△ABD≌△ACF(ASA),

∴BD=CF,

∴BD=2CE,

=2.


【解析】(1)直接判斷出△ABD∽△ECD,即可得出結(jié)論;(2)先設(shè)AB=AC=2a,CD=a,則BC= a,AD=a.求出BD,而△BAD∽△CED,得出 ,代入求出CE即可解決問題.(2)如圖3,延長(zhǎng)CE、BA相交于點(diǎn)F.只要證明△BEC≌△BEF,推出CE=EF,CF=2CE,由ABD≌△ACF,推出BD=CF,即可解決問題.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是(
A.k> 且k≠2
B.k≥ 且k≠2
C.k> 且k≠2
D.k≥ 且k≠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, ,∠COD=32°,則∠AEO的度數(shù)是(
A.48°
B.51°
C.56°
D.58°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AC=12cm,BD=16cm,動(dòng)點(diǎn)N從點(diǎn)D出發(fā),沿線段DB以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從點(diǎn)B出發(fā),沿線段BA以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(t>0),以點(diǎn)M為圓心,MB長(zhǎng)為半徑的⊙M與射線BA,線段BD分別交于點(diǎn)E,F(xiàn),連接EN.
(1)求BF的長(zhǎng)(用含有t的代數(shù)式表示),并求出t的取值范圍;
(2)當(dāng)t為何值時(shí),線段EN與⊙M相切?
(3)若⊙M與線段EN只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)
(3)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3 , …組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2017秒時(shí),點(diǎn)P的坐標(biāo)是( )

A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=10,BC=12,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B的方向在AB上移動(dòng),動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),按B→C的方向在BC上移動(dòng)(當(dāng)P點(diǎn)到達(dá)點(diǎn)B時(shí),P點(diǎn)和Q點(diǎn)停止移動(dòng),且兩點(diǎn)的移動(dòng)速度相等),記PA=x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC水平向右平移4個(gè)單位,再向下后平移1得到A′B′C′.

(1)畫出平移后的A′B′C′;

(2)畫出AB邊上的高線CD(利用三角板畫圖);

(3)畫出ABCAB邊上的中線CE;

(4)圖中ACA′C′的關(guān)系是:      ;

(5)BCE的面積為      

(6)若A″BC的面積與ABC面積相同,則A″(A″在格點(diǎn)上)的位置(除A點(diǎn)外)共有_________個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案