【題目】如圖,△ABC中,∠C=90°,CA=CB,點M在線段AB上,∠GMB=∠A,BG⊥MG,垂足為G,MG與BC相交于點H.若MH=8cm,則BG= cm.
【答案】4.
【解析】
試題分析:如圖,作MD⊥BC于D,延長DE交BG的延長線于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠CBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM為等腰直角三角形,∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HDM=90°﹣∠E,∴∠GBD=∠HDM,∴在△BED和△MHD中,∵∠E=∠MHD,∠EBD=∠HMD,BD=MD,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案為:4.
科目:初中數(shù)學 來源: 題型:
【題目】把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是 ___命題(填“真”或“假”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件: ,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究題
(1)理解證明:
如圖1,∠MAN=90°,射線AE在這個角的內(nèi)部,點B,C在∠MAN的邊AM,AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.證明△ABD≌△CAF;
(2)類比探究:
如圖2,點B,C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順指針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…,若點A(,0),B(0,4),則點B2016的橫坐標為( )
A.5 B.12 C.10070 D.10080
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過P點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )
A.
B.y= x+
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com