【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與A、B重合,CD的延長線交于⊙O點E,連接AE、BE,過點A作AF⊥BC,垂足為F,∠ABC=30°.
(1)求證:AF是⊙O的切線;
(2)若BC=6,CD=3,則DE的長為 ;
(3)當點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.
【答案】(1)見解析;(2)9;(3)不變,
【解析】
(1)如圖1中,連接AC,OC,OA.想辦法證明OA∥BF即可解決問題;
(2)證明△BCD∽△ECB,推出,求出CE即可解決問題;
(3)如圖2中,連接AC,OC,OC交AB于H,作AN∥EC交BE的延長線于N.證明△ACE∽△ABN,推出可得結論.
(1)證明:如圖1中,連接AC,OC,OA,
∵∠AOC=2∠ABC=60°,OA=OC,
∴△AOC是等邊三角形,
∴∠CAO=60°,
∵,
∴AB⊥OC,
∴∠OAD=∠OAC=30°,
∵∠ABC=30°,
∴∠ABC=∠OAD,
∴OA∥BF,
∵AF⊥BF,
∴OA⊥AF,
∴AF是⊙O的切線;
(2)解:∵,
∴∠CBD=∠BEC,
∵∠BCD=∠BCE,
∴△BCD∽△ECB,
∴,
∴,
∴EC=12,
∴DE=EC﹣CD=12﹣3=9,
故答案為:9;
(3)解:結論:=,的值不變.
理由:如圖2中,連接AC,OC,OC交AB于H,作AN∥EC交BE的延長線于N.
∵,
∴OC⊥AB,CB=CA,
∴BH=AH=AB,
∵∠ABC=30°,
∴BH=BC,
∴AC=AB,
∵CE∥AN,
∴∠N=∠CEB=30°,∠EAN=∠AEC=∠ABC=30°,
∴∠CEA=∠ABC=30°,∠EAN=∠N,
∴∠N=∠AEC,AE=EN,
∵∠ACE=∠ABN,
∴△ACE∽△ABN,
∴=,
∴=,
∴的值不變.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,已知∠C=90°,∠B=60°,點D在邊BC上,過D作DE⊥AB于E.
(1)連接AD,取AD的中點F,連接CF,EF,判斷△CEF的形狀,并說明理由
(2)若BD=CD.把△BED繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是規(guī)格為的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
(1)請在網(wǎng)格中建立平面直角坐標系,使點坐標為,點坐標為;
(2)在第二象限內的格點上畫一點,使點與線段組成一個以為底的等腰三角形,且腰長是無理數(shù), 則點坐標是________,的周長是_________(結果保留根號);
(3)畫出以點為旋轉中心、旋轉后的,連結和,試說出四邊形是何特殊四邊形, 并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為4的正方形,E為CD上一點,且DE=1,F為射線BC上一動點,過點E作EG⊥AF于點P,交直線AB于點G.則下列結論中:①AF=EG;②若∠BAF=∠PCF,則PC=PE;③當∠CPF=45°時,BF=1;④PC的最小值為﹣2.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,平面直角坐標的原點是等邊三角形的中心,A(0,1),把△ABC繞點O順時針旋轉,每秒旋轉60°,則第2017秒時,點A的坐標為( 。
A. (0,1) B. (﹣,﹣) C. (,) D. (,﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了掌握八年級數(shù)學考試卷的命題質量與難度系數(shù),命題組教師赴外地選取一個水平相當?shù)陌四昙壈嗉夁M行預測,將考試成績分布情況進行處理分析,制成如圖表(成績得分均為整數(shù)):
根據(jù)圖表中提供的信息解答下列問題:
組別 | 成績分組 | 頻數(shù) |
A | 47.5~59.5 | 2 |
B | 59.5~71.5 | 4 |
C | 71.5~83.5 | a |
D | 83.5~95.5 | 10 |
E | 95.5~107.5 | b |
F | 107.5~120 | 6 |
(1)頻數(shù)分布表中的a= ,b= ;扇形統(tǒng)計圖中的m= ,n= ;
(2)已知全區(qū)八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優(yōu)秀,預計優(yōu)秀的人數(shù)約為 人,72分及以上為及格,預計及格的人數(shù)約為 人;
(3)補充完整頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com