如圖所示,在邊長為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對(duì)角線AC上移動(dòng),直角邊PQ經(jīng)過點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
(1)試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
(2)連接PB,試證明:△PBE為等腰三角形.

【答案】分析:(1)作輔助線:過點(diǎn)P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA),然后由全等三角形的對(duì)應(yīng)邊相等證明PE=PD;
(2)由正方形的四條邊相等,對(duì)角線平分對(duì)角的性質(zhì)證明△APB≌△APD(SAS),然后由全等三角形的對(duì)應(yīng)邊相等證明PB=PD;利用(1)的結(jié)論,由等量代換證明PE=PB,即△PBE為等腰三角形;
解答: (1)解:PE=PD.
證明:過點(diǎn)P作GF∥AB,分別交AD、BC于G、F.
如圖所示.
∵四邊形ABCD是正方形,
∴四邊形ABFG和四邊形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形,
∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°;
又∵∠1+∠3=∠2+∠3=90°,
∴∠1=∠2;
又PF=GD,∠PFE=∠PGD=90°,
∴Rt△EFP≌Rt△PGD(ASA),
∴PE=PD;

(2)證明:∵AD=AB,∠PAB=∠PAD=45°,AP=AP,
∴△APB≌△APD(SAS),
∴PB=PD,
∴PE=PB,
∴△PBE為等腰三角形.
點(diǎn)評(píng):本題綜合考查了正方形的性質(zhì)、等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì).解答此題的關(guān)鍵是通過作輔助線:過點(diǎn)P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為a的正方形中,剪去一個(gè)邊長為b的小正方形(a>b),將余下部分拼成一個(gè)梯形,根據(jù)兩個(gè)圖形陰影部分面積的關(guān)系,可以得到一個(gè)關(guān)于a、b的恒等式為( 。
精英家教網(wǎng)
A、(a-b)2=a2-2ab+b2B、(a+b)2=a2+2ab+b2C、a2-b2=(a+b)(a-b)D、a2+ab=a(a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在邊長為a的正方形中挖去一個(gè)邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個(gè)矩形,通過計(jì)算圖形(陰影部分的面積),驗(yàn)證了一個(gè)等式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后的圖形△A′B′C′,并計(jì)算對(duì)應(yīng)點(diǎn)B和B′之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

同步練習(xí)冊(cè)答案