4.如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.根據(jù)最近人體構(gòu)造學(xué)的研究成果表明,一般情況下人的指距d和身高h成某種關(guān)系.如表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(cm)160169178187
根據(jù)上表解決下面這個實際問題:姚明的身高是226厘米,可預(yù)測他的指距約為( 。
A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米

分析 先根據(jù)題意求出一次函數(shù)的解析式,再把y=226代入即可求出答案.

解答 解:設(shè)這個一次函數(shù)的解析式是:y=kx+b,
$\left\{\begin{array}{l}{160=20k+b}\\{169=21k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=9}\\{b=-20}\end{array}\right.$,
一次函數(shù)的解析式是:y=9x-20,
當(dāng)y=226時,
9x-20=226,
x=27.3.
故選:C.

點評 本題主要考查了一次函數(shù)的應(yīng)用,在解題時要能根據(jù)題意求出一次函數(shù)的解析式是本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.將一張矩形紙條ABCD按如圖所示折疊,若折疊角∠FEC=70°,則∠1=40 度;△EFG是等腰 三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如圖,正方形ABCD中,點E在DC邊上,DE=4,EC=2,把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則FC的長為2或10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,?ABCD中,點E,F(xiàn)分別在BC,AD上,且AE平分∠BAD,BF平分∠ABC,求證:CE=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.計算:
(1)(-1)2015-($\frac{1}{2}$)-3+(cos68°+$\frac{5}{π}$)0+|3$\sqrt{3}$-8sin60°|;
(2)|3-$\sqrt{12}$|+($\frac{\sqrt{6}}{2+\sqrt{2}}$)0+cos230°-4sin60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,圖1是一個長為2x,寬為2y的長方形,沿圖中虛線剪成四個完全相同的小長方形,再按圖2圍成一個正方形.
(1)請用兩種方法計算圖2中中間小正方形的面積;
(2)比較(1)的兩種結(jié)果,你能得到怎樣的等量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,正方形ABCD的邊長是4,E是AB上一點,F(xiàn)是AD延長線上一點,BE=DF.
矩形AEGF的邊EG與邊CD相交于點H.設(shè)BE=x,四邊形DHGF的面積為y.
(1)求:y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當(dāng)BE為何值時,四邊形DHGF的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.用12m長的籬笆在空地上圍成一個綠化場地,現(xiàn)有幾種設(shè)計方案:正三角形、正方形、正六邊形、圓,試通過計算說明哪種場地的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.直角三角形的一條直角邊長為xcm,兩條直角邊的和為7cm,面積為ycm2,寫出變量y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍,并說明這個函數(shù)是不是二次函數(shù).

查看答案和解析>>

同步練習(xí)冊答案