【題目】如圖,在矩形紙片ABCD中,已知AB=2BC=,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE翻折得到多邊形AB’C’E,B、C的對應點分別為點B’,C’

1)當點E與點C重合時,求DF的長

2)如果點MCD的中點,那么在點E從點C移動到點D的過程中,求C’M的最小值

【答案】(1) ;(2) CM的最小值為4

【解析】

1)證明∠DCF=30°,解直角三角形即可.

2)連接AM,AC′,MC′.求出AC′,AM,利用三角形的三邊關系即可解決問題.

1)如圖,

∵四邊形ABCD是矩形,

ABCD2,BCAD2,∠B=∠BCD=∠D90°,

tanACB

∴∠ACB30°,

由翻折不變性可知:∠ACB=∠ACF30°,

DCF30°,

DFCDtan30°=

2)如圖中,連接AM,AC′,MC′.

AC′=4,AM

CMAC′﹣AM,

CM4

CM的最小值為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(問題探究):某數(shù)學“探究學習”小組對以上因式分解題目進行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

該多項式不能直接使用提取公因式法,公式法進行因式分解.于是仔細觀察多項式的特點.甲發(fā)現(xiàn)該多項式前兩項有公因式2x,后兩項有公因式﹣3,分別把它們提出來,剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙發(fā)現(xiàn)該多項式的第二項和第四項含有公因式y,第一項和第三項含有公因式x,把y、x提出來,剩下的是相同因式(2x3),可以繼續(xù)用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

該多項式亦不能直接使用提取公因式法,公式法進行因式分解,于是若將此題按探究1的方法分組,將含有a的項分在一組即a2+4aaa+4),含有b的項一組即﹣b24b=﹣bb+4),但發(fā)現(xiàn)aa+4)與﹣bb+4)再沒有公因式可提,無法再分解下去.于是再仔細觀察發(fā)現(xiàn),若先將a2b2看作一組應用平方差公式,其余兩項看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法總結):對不能直接使用提取公因式法,公式法進行分解因式的多項式,我們可考慮把被分解的多項式分成若干組,分別按“基本方法”即提取公因式法和運用公式法進行分解,然后,綜合起來,再從總體上按“基本方法”繼續(xù)進行分解,直到分解出最后結果.這種分解因式的方法叫做分組分解法.

分組分解法并不是一種獨立的因式分解的方法,而是通過對多項式進行適當?shù)姆纸M,把多項式轉(zhuǎn)化為可以應用“基本方法”分解的結構形式,使之具有公因式,或者符合公式的特點等,從而達到可以利用“基本方法”進行分解因式的目的.

(學以致用):嘗試運用分組分解法解答下列問題:

1)分解因式:

2)分解因式:

(拓展提升):

3)嘗試運用以上思路分解因式:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結論:①AM=MN;

②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,ABBC9,∠BCD120°.點M從點A出發(fā)沿射線AB方向移動.同時點N從點B出發(fā),以相同的速度沿射線BC方向移動,連接AN,CM,直線ANCM相交于點P

1)如圖甲,當點MN分別在邊AB、BC上時,

求證:ANCM;

連接MN,當△BMN是直角三角形時,求AM的值.

2)當M、N分別在邊ABBC的延長線上時,在圖乙中畫出點P,并直接寫出∠CPN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用“”或“”填空:

1)如果,,那么a________b;

2)如果,那么a____b

3)如果,,那么a____b

4)當,b____0時,或者,b___0時,有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,則AD=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A10),B0),且與y軸相交于點C

(1)求這條拋物線的表達式;

(2)求∠ACB的度數(shù);

(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當△DCE與△AOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進的速度,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求:

1)港口A與小島C之間的距離;

2)甲輪船后來的速度.

查看答案和解析>>

同步練習冊答案