【題目】在直角坐標(biāo)系中,O 為坐標(biāo)原點,已知點 A1,2),點 P y 軸正半軸上的一點,且AOP 為等腰三角形,則點 P 的坐標(biāo)為_____________

【答案】

【解析】

有三種情況:①以O為圓心,以OA為半徑畫弧交y軸于D,求出OA即可;②以A為圓心,以OA為半徑畫弧交y軸于P,求出OP即可;③作OA的垂直平分線交y軸于C,則ACOC,根據(jù)勾股定理求出OC即可.

有三種情況:①以O為圓心,以OA為半徑畫弧交y軸于D,則OAOD

D0,);

②以A為圓心,以OA為半徑畫弧交y軸于P,OP2×yA=4

P0,4);

③作OA的垂直平分線交y軸于C,則ACOC

由勾股定理得:OCAC,

OC,

C0,);

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化工車間發(fā)生有害氣體泄漏,從泄漏開始到完全控制利用了,之后將對泄漏的有害氣體進(jìn)行處理,線段表示氣體泄漏時車間內(nèi)檢測表顯示數(shù)據(jù)與時間() 之間的函數(shù)關(guān)系(), 反比例函數(shù)對應(yīng)曲線表示氣體泄漏控制后檢測表顯示數(shù)據(jù)與時間() 之間的函數(shù)關(guān)系().根據(jù)圖像解答下列問題:

(1)試求出檢測表在氣體泄漏之初顯示的數(shù)據(jù)(即點的縱坐標(biāo));

(2)求反比例函數(shù)的表達(dá)式, 并確定車間內(nèi)檢測表恢復(fù)到氣體泄漏之初數(shù)據(jù)時對應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是兩塊完全一樣的含30°角的直角三角尺,分別記做△ABC△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設(shè)較長直角邊的中點為M,繞中點M轉(zhuǎn)動上面的三角尺ABC,使其直角頂點C恰好落在三角尺A′B′C′的斜邊A′B′當(dāng)∠A=30°,AC=10,兩直角頂點C,C′間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有AB兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格萬元

a

b

處理污水量

240

200

a,b的值;

治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;

的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=x2-2x+c與y軸的交點為(0,-3),則下列說法不正確的是

A.拋物線開口向上

B拋物線的對稱軸是x=1

C當(dāng)x=1時,y的最大值為-4

D拋物線與x軸的交點為(-1,0),(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A、B,與y軸交于點C,點O為坐標(biāo)原點,點D為拋物線頂點,點E在拋物線上,點Fx軸上,四邊形OCEF為矩形,且OF=2,EF=3

1)求拋物線所對應(yīng)的函數(shù)解析式;

2)求ΔABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D,E分別在邊ABAC上,且AD=AE,連接BECD,交于點F.

(1)求證:∠ABE=∠ACD

(2)求證:過點A、F的直線垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形 ABCD 中,∠Ax°,∠Cy°.

(1) ABC+∠ADC °.(用含 x,y 的代數(shù)式表示)

(2) BEDF 分別為∠ABC、∠ADC 的外角平分線,

①若 BEDF,x30,則 y ;

②當(dāng) y2x 時,若 BE DF 交于點 P,且∠DPB20°,求 y 的值.

(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點 Q,則∠Q °.(用含 xy 的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案