【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
【答案】(1)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為250元、210元;(2)超市最多采購A種型號(hào)電風(fēng)扇10臺(tái)時(shí),采購金額不多于5400元;(3)在(2)的條件下超市不能實(shí)現(xiàn)利潤1400元的目標(biāo).
【解析】試題分析:(1)設(shè)A、B兩種型號(hào)電風(fēng)扇的銷售單價(jià)分別為x元、y元,根據(jù)3臺(tái)A型號(hào)5臺(tái)B型號(hào)的電扇收入1800元,4臺(tái)A型號(hào)10臺(tái)B型號(hào)的電扇收入3100元,列方程組求解;
(2)設(shè)采購A種型號(hào)電風(fēng)扇a臺(tái),則采購B種型號(hào)電風(fēng)扇(30-a)臺(tái),根據(jù)金額不多余5400元,列不等式求解;
(3)設(shè)利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實(shí)現(xiàn)目標(biāo).
試題解析:(1)設(shè)A、B兩種型號(hào)的電風(fēng)扇的銷售價(jià)分別為x、y元
則:
解得:
答:A、B兩種型號(hào)電風(fēng)扇的銷售介分別為250元和210元。
②設(shè)采購A種型號(hào)電風(fēng)扇a臺(tái),則采購B種型號(hào)的電風(fēng)扇(30-a)臺(tái)
則200a+170(30-a)≤540
解得a≤10
答:最多采購A種型號(hào)的電風(fēng)扇10臺(tái)。
③根據(jù)題意得(2500-200)a+(210-170)(30-a)=1400
解得a=20
∵a≤10
所以在(2)條件下超市銷售完這30臺(tái)電風(fēng)扇不能實(shí)現(xiàn)利潤為1400元的目標(biāo)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,⊙C過原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心C的坐標(biāo).
(2)拋物線y=ax2+bx+c過O,A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-的圖象上,求拋物線的解析式.
(3)過圓心C作平行于x軸的直線DE,交⊙C于D,E兩點(diǎn),試判斷D,E兩點(diǎn)是否在(2)中的拋物線上.
(4)若(2)中的拋物線上存在點(diǎn)P(x0,y0),滿足∠APB為鈍角,求x0的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某景區(qū)共接待游客約1260000人次,將“1260000”用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】儀征市某活動(dòng)中心組織一次少年跳繩比賽,各年齡組的參賽人數(shù)如表所示:
年齡組 | 12歲 | 13歲 | 14歲 | 15歲 |
參賽人數(shù) | 5 | 19 | 13 | 13 |
則全體參賽選手年齡的中位數(shù)是歲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB的長為2,點(diǎn)C在圓周上,∠CAB=30°,點(diǎn)D是圓上一動(dòng)點(diǎn),DE∥AB交CA的延長線于點(diǎn)E,連接CD,交AB于點(diǎn)F.
(1)如圖1,當(dāng)∠ACD=45°時(shí),求證:DE是⊙O的切線;
(2)如圖2,當(dāng)點(diǎn)F是CD的中點(diǎn)時(shí),求△CDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com