已知拋物線經(jīng)過點(diǎn)A(-1,0),B(3,0),交軸于點(diǎn)CM為拋物線的頂點(diǎn),連接MB

(1)求該拋物線的解析式;
(2)在軸上是否存在點(diǎn)P滿足△PBM是直角三角形,若存在,請求出P點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)設(shè)Q點(diǎn)的坐標(biāo)為(8,0),將該拋物線繞點(diǎn)Q旋轉(zhuǎn)180°后,點(diǎn)M的對應(yīng)點(diǎn)為,求的度數(shù).
(1) (2)P點(diǎn)的坐標(biāo)為(0,1),(0,3),,
(3)=135°

試題分析:(1)∵因?yàn)閽佄锞經(jīng)過點(diǎn)A(-1,0),B(3,0)

解得

(2)設(shè)點(diǎn)P的坐標(biāo)為(0,y),

① 若∠MPB=90°,過點(diǎn)M作ME ⊥x軸,MF ⊥y軸,
易證R t △PFM ∽ R t △BOP,可得:
解得,∴點(diǎn)P的坐標(biāo)為(0,1),(0,3)

② 若∠PMB=90°,同理,R t △PFM ∽ R t △BEM,
 解得: ∴點(diǎn)P的坐標(biāo)為
③ 若∠MBP=90°,同理, R t △POB ∽ R t △BEM
,解得: ,∴點(diǎn)P的坐標(biāo)為
綜上:△PBM是直角三角形時(shí),P點(diǎn)的坐標(biāo)為(0,1),(0,3),,
(3)
由題意可知:B(3,0),M(1,4),Q(8,0),點(diǎn)M,M′關(guān)于點(diǎn)Q中心對稱,
∴M′ (15,-4),
連結(jié)M′B,并延長M′B交y軸于點(diǎn)D,
,可得D(0,1)
連結(jié)MD,易證R t △DFM≌R t △DOB
∴△DBM是等腰直角三角形,∠DBM=45°
=135°
解法二:
過點(diǎn)M′作MB的垂線交MB的延長線于點(diǎn)D,
由△MBM′面積計(jì)算,轉(zhuǎn)化為已知△面積和底邊MB求高D M′,解得
再由 ,  M’D⊥MD, ∴△DBM′是等腰Rt△,
∴    
∴ ∠M’BD=∠BM’D=45°
=135°
點(diǎn)評:該題較為復(fù)雜,是?碱},主要考查學(xué)生對求二次函數(shù)解析式以及對圖形中點(diǎn)與線段在直角坐標(biāo)系中表示的方法的應(yīng)用。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸的兩個(gè)交點(diǎn)A、B,與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(4,0),C點(diǎn)坐標(biāo)(0,-4).

(1)求拋物線的解析式;
(2)用直尺和圓規(guī)作出△ABC的外接圓⊙M,(不寫作法,保留作圖痕跡),并求⊙M的圓心M的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象過點(diǎn).

(1)求二次函數(shù)的解析式;
(2)求證:是直角三角形;
(3)若點(diǎn)在第二象限,且是拋物線上的一動點(diǎn),過點(diǎn)垂直軸于點(diǎn),試探究是否存在以、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo).若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,等腰直角的斜邊軸上,頂點(diǎn)的坐標(biāo)為,為斜邊上的高.拋物線與直線交于點(diǎn),點(diǎn)的橫坐標(biāo)為.點(diǎn)軸的正半軸上,過點(diǎn)軸.交射線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,以為頂點(diǎn)的四邊形的面積為

(1)求所在直線的解析式;
(2)求的值;
(3)當(dāng)時(shí),求的函數(shù)關(guān)系式;
(4)如圖,設(shè)直線交射線于點(diǎn),交拋物線于點(diǎn).以為一邊,在的右側(cè)作矩形,其中.直接寫出矩形重疊部分為軸對稱圖形時(shí)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則一次函數(shù)的圖象不經(jīng)過(   ).
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與直線AB交于點(diǎn)A(-1,0),B(4,).點(diǎn)D是拋物線A,B兩點(diǎn)間部分上的一個(gè)動點(diǎn)(不與點(diǎn)A,B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);
(4)當(dāng)點(diǎn)D為拋物線的頂點(diǎn)時(shí),若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線AB上的動點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)圖象y=ax2+(a-3)x+1與x軸只有一個(gè)交點(diǎn)則a的值為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等邊△ABC的邊長為3cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動,到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動時(shí)間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖像大致為  【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系xOy中, Rt△AOB的直角邊OA在x軸的正半軸上,點(diǎn)B在第一象限,并且AB=3,OA=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90度得到△COD.點(diǎn)P從點(diǎn)C出發(fā)(不含點(diǎn)C),沿射線DC方向運(yùn)動,記過點(diǎn)D,P,B的拋物線的解析式為y=ax2+bx+c(a<0).

(1)直接寫出點(diǎn)D的坐標(biāo);
(2)在直線CD的上方是否存在一點(diǎn)Q,使得點(diǎn)D,O,P,Q四點(diǎn)構(gòu)成的四邊形是菱形,若存在,求出P與Q的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動到∠DOP=45度時(shí),求拋物線的對稱軸;
(4)求代數(shù)式a+b+c的值的取值范圍(直接寫出答案即可).

查看答案和解析>>

同步練習(xí)冊答案