【題目】拋物線的圖象經(jīng)過坐標原點,且與軸另交點為.

1)求拋物線的解析式;

2)如圖,直線與拋物線相交于點和點(點在第二象限),求的值(用含的式子表示);

3)在(2)中,若,設(shè)點是點關(guān)于原點的對稱點,如圖.平面內(nèi)是否存在點,使得以點、、、為頂點的四邊形是菱形?若存在,直接寫出點的坐標;若不存在,請說明理由.

【答案】1y=x2+x;(2y2y1==m0);(3)存在符合題意的點P,且以點A、B、A′P為頂點的菱形分三種情況,點P的坐標為(2)、(﹣,)和(﹣,﹣2).

【解析】

1)根據(jù)點的坐標,利用待定系數(shù)法即可求出拋物線F的解析式;
2)將直線l的解析式代入拋物線F的解析式中,可求出x1x2的值,利用一次函數(shù)圖象上點的坐標特征可求出y1、y2的值,做差后即可得出y2-y1的值;
3)根據(jù)m的值可得出點A、B的坐標,利用對稱性求出點A的坐標.利用兩點間的距離公式(勾股定理)可求出AB、AA、AB的值,由三者相等即可得出△AAB為等邊三角形;結(jié)合菱形的性質(zhì),可得出存在符合題意得點P,設(shè)點P的坐標為(x,y),分三種情況考慮:(i)當AB為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標;(ii)當AB為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標;(iii)當AA為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標.綜上即可得出結(jié)論.

1)∵拋物線y=x2+bx+c的圖象經(jīng)過點(0,0)和(-,0),

,

解得:,

∴拋物線F的解析式為y=x2+x

2)將y=x+m代入y=x2+x,得:x2=m,

解得:x1=,x2=

y1=+m,y2=+m,

y2y1=+m)﹣(﹣+m=m0).

3)∵m=,

∴點A的坐標為(﹣,),點B的坐標為(,2).

∵點A是點A關(guān)于原點O的對稱點,

∴點A的坐標為(,﹣).

由兩點距離公式可得:AA′=AB=AB=,

∴存在符合題意的點P,且以點A、B、A、P為頂點的菱形分三種情況,設(shè)點P的坐標為(xy).

i)當AB為對角線時,有,

解得:,

∴點P的坐標為(2);

ii)當AB為對角線時,有,

解得:

∴點P的坐標為(﹣,);

iii)當AA為對角線時,有

解得:,

∴點P的坐標為(﹣,﹣2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,點從點出發(fā),以的速度沿向點運動,同時點從點出發(fā),以的速度沿向點運動,知道它們都到達點為止.若的面積為,點的運動時間為,則的函數(shù)圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題)用n2×1矩形,鑲嵌一個n矩形,有多少種不同的鑲嵌方案?(n矩形表示矩形的鄰邊是2n

(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進,最后猜想得出結(jié)論.

探究一:用12×1矩形,鑲嵌一個2×1矩形,有多少種不同的鑲嵌方案?

如圖(1),顯然只有1種鑲嵌方案.所以,a11

探究二:用22×1矩形,鑲嵌一個2×2矩形,有多少種不同的鑲嵌方案?

如圖(2),顯然只有2種鑲嵌方案.所以,a22

探究三:用32×1矩形,鑲嵌一個2×3矩形,有多少種不同的鑲嵌方案?

一類:在探究一每個鑲嵌圖的右側(cè)再橫著鑲嵌22×1矩形,有1種鑲嵌方案;

二類:在探究二每個鑲嵌圖的右側(cè)再豎著鑲嵌12×1矩形,有2種鑲嵌方案;

如圖(3).所以,a31+23

探究四:用42×1矩形,鑲嵌一個2×4矩形,有多少種不同的鑲嵌方案?

一類:在探究二每個鑲嵌圖的右側(cè)再橫著鑲嵌22×1矩形,有   種鑲嵌方案;

二類:在探究三每個鑲嵌圖的右側(cè)再豎著鑲嵌12×1矩形,有   種鑲嵌方案;

所以,a4   

探究五:用52×1矩形,鑲嵌一個2×5矩形,有多少種不同的鑲嵌方案?

(仿照上述方法,寫出探究過程,不用畫圖)

……

(結(jié)論)用n2×1矩形,鑲嵌一個n矩形,有多少種不同的鑲嵌方案?

(直接寫出anan1,an2的關(guān)系式,不寫解答過程).

(應(yīng)用)用102×1矩形,鑲嵌一個2×10矩形,有   種不同的鑲嵌方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,點分別在邊,上,且

1)如圖1,若,求證:;

2)如圖2,若,且點的中點,連接于點,求

3)如圖3,若,探究線段、三之間的數(shù)量關(guān)系,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一座堤壩的橫截面是梯形,根據(jù)圖中給出的數(shù)據(jù),求壩高和壩底寬(精確到0.1m)參考數(shù)據(jù):≈1.414,≈1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,點分別在邊、上.

1)若,求證:四邊形是平行四邊形;

2)若四邊形是菱形,求菱形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BDAC,垂足為E,點FBD的延長線上,且DF=DC,連接AF、CF.

(1)求證:∠BAC=2DAC

(2)AF10,BC4,求tanBAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線為常數(shù))交軸于點,與軸的一個交點在之間,頂點為

①拋物線與直線有且只有一個交點;

②若點、點、點在該函數(shù)圖象上,則

③將該拋物線向左平移個單位,再向下平移個單位,所得拋物線解析式為;

④點關(guān)于直線的對稱點為分別在軸和軸上,當時,四邊形周長的最小值為

其中正確判斷的序號是( )

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一枚均勻的正四面體,四個面上分別標有數(shù)字1,23,4,小紅隨機地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫有數(shù)字2,-1,1的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計算出S=x+y的值.

(1)用樹狀圖或列表法表示出S的所有可能情況;

(2)分別求出當S=0S<2時的概率.

查看答案和解析>>

同步練習冊答案