【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,FH與AC交于點M,以下結(jié)論:
①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤=FGDG,其中正確結(jié)論的個數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a,0),點C的坐標(biāo)為(0,b),且a、b滿足+|b-6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.
(1)a=______________,b=_____________,點B的坐標(biāo)為_______________;
(2)當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);
(3)在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于⊙C的反稱點,如圖為點P及其關(guān)于⊙C的反稱點P′的示意圖.
特別地,當(dāng)點P′與圓心C重合時,規(guī)定CP′=0.
(1)當(dāng)⊙O的半徑為1時.
①分別判斷點M(2,1),N(,0),T(1, )關(guān)于⊙O的反稱點是否存在?若存在,求其坐標(biāo);
②點P在直線y=﹣x+2上,若點P關(guān)于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于⊙C的反稱點P′在⊙C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF是兩個邊長都為8cm的等邊三角形,且 B、D、C、F都在同一條直線上,連接AD、CE
(1)求證:四邊形ADEC是平行四邊形
(2)若BD=3cm, △ABC沿著BF的方向以每秒1cm的速度運(yùn)動,設(shè)△ABC運(yùn)動時間為t秒
①當(dāng)t等于多少秒時,四邊形ADEC為菱形;
②點B運(yùn)動過程中,四邊形ADEC有可能是矩形嗎?若可能,請畫出圖形,并求出t的值;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙少3km;④甲比乙先到達(dá)終點.其中正確的有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD是△ABC的角平分線,點E.F分別在邊AB.BC上,且ED∥BC,EF∥AC,求證:
(1)BE等于CF
(2)∠ABC=60゜,∠ADB=100゜,求∠AEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com