【題目】如圖,ABC中,ABAC,且ABC60°DABC內(nèi)一點(diǎn) ,且DADBEABC外一點(diǎn),BEAB,且EBDCBD,連DE,CE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

【答案】B

【解析】

連接DC,,再證,得出;其它兩個(gè)條件運(yùn)用假設(shè)成立推出答案即可.

解:證明:連接DC,

∵△ABC是等邊三角形,
AB=BC=AC,∠ACB=60°,
DB=DA,DC=DC,
ACDBCD中, ,
∴△ACD≌△BCD SSS),

由此得出結(jié)論①正確;
∴∠BCD=ACD=
BE=AB,
BE=BC,
∵∠DBE=DBCBD=BD,
BEDBCD中,,
∴△BED≌△BCD SAS),
∴∠DEB=BCD=30°
由此得出結(jié)論③正確;

ECAD
∴∠DAC=ECA,
∵∠DBE=DBC,∠DAC=DBC,
∴設(shè)∠ECA=DBC=DBE=1,
BE=BA,
BE=BC,
∴∠BCE=BEC=60°+1
BCE中三角和為180°,
21+260°+1=180°
∴∠1=15°,
∴∠CBE=30,這時(shí)BEAC邊上的中垂線,結(jié)論②才正確.

因此若要結(jié)論②正確,需要添加條件ECAD.

故答案為:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自古以來(lái),人類(lèi)對(duì)于蜜蜂的勤勞以及蜂巢的巧妙精準(zhǔn)無(wú)不贊揚(yáng)有加.從生物學(xué)鼻祖亞里士多德,到數(shù)學(xué)家帕普斯,以及近代的生物學(xué)家達(dá)爾文都曾留下了贊美的詩(shī)句.工蜂分泌蜂蠟筑成蜂窩,作為蜂王產(chǎn)卵、工蜂育幼以及存放蜂蜜、花粉的貯藏室.從正面來(lái)看,蜂巢是由許多正六邊形連結(jié)而成,正六邊形是能夠不重疊地鋪滿一個(gè)平面的三種正多邊形之一,另外兩種分別是正方形和正三角形.

1)一根長(zhǎng)12的鐵絲分別圍成正三角形,正方形,正六邊形,請(qǐng)同學(xué)們直接寫(xiě)出圍成圖形的面積: , , ;

2)在(1)的條件下,比較圍成圖形面積的大小;

3)通過(guò)以上計(jì)算,當(dāng)面積一定時(shí),耗材最少的圖形是 (填:正三角形、正方形、正六邊形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】筆直的河流一側(cè)有一旅游地C,河邊有兩個(gè)漂流點(diǎn)A.B.其中AB=AC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,為方便游客決定在河邊新建一個(gè)漂流點(diǎn)H(A,H,B在一條直線上),并新修一條路CH測(cè)得BC=5千米,CH=4干米,BH=3千米,

(1)問(wèn)CH是否為從旅游地C到河的最近的路線?請(qǐng)通過(guò)計(jì)算加以說(shuō)明;

(2)求原來(lái)路線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)班組織了一次食品安全知識(shí)競(jìng)賽,甲、乙兩隊(duì)各5人的成績(jī)?nèi)绫硭?/span>(10分制)

數(shù)據(jù)

中位數(shù)

眾數(shù)

方差

8

10

9

6

9

9

1.84

10

8

9

7

8

8

1.04

(1)補(bǔ)全表格中的眾數(shù)和中位數(shù)

(2)并判斷哪隊(duì)的成績(jī)更穩(wěn)定?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)O(shè)[a,b,c]為函數(shù)y=ax2bxc的特征數(shù),下面給出特征數(shù)為[2m,1-m,-1-m]的函數(shù)的若干結(jié)論:

①當(dāng)m=-3時(shí),該函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,);

②當(dāng)m=1時(shí),該函數(shù)圖象截x軸所得的線段的長(zhǎng)度為2;

③當(dāng)m=-1時(shí),該函數(shù)在x時(shí),yx的增大而減;

④當(dāng)m≠0時(shí),該函數(shù)圖象必經(jīng)過(guò)x軸上的一個(gè)定點(diǎn).

上述結(jié)論中正確的有_________________.(只需填寫(xiě)所有正確答案的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;

(2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫(xiě)出△A2B2C2各頂點(diǎn)的坐標(biāo);

(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對(duì)稱(chēng)?若是,請(qǐng)?jiān)趫D上畫(huà)出這條對(duì)稱(chēng)軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊三角形ABC的邊長(zhǎng)為7,點(diǎn)DAB上一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且CE=AD,連接DEAC于點(diǎn)F,作DHAC于點(diǎn)H,則線段HF的長(zhǎng)為 ____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC中,∠ACB90°,CACB4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CPCQ2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BPBQ

1)如圖1求證:APBQ;

2)如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)AP、Q在同一直線時(shí),求AP的長(zhǎng);

3)設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫(xiě)出旋轉(zhuǎn)過(guò)程中EP、EQ、EC之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,函數(shù)y=(x>0,k為常數(shù))的圖象經(jīng)過(guò)A(4,1),點(diǎn)B(a,b)(0<a<4)是雙曲線上的一動(dòng)點(diǎn),過(guò)AACy軸于C,點(diǎn)D是坐標(biāo)系中的另一點(diǎn).若以A.B.C.D為頂點(diǎn)的平行四邊形的面積為12,那么對(duì)角線長(zhǎng)度的最大值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案