【題目】如圖,在中,,過點(diǎn)的直線,為邊上一點(diǎn),過點(diǎn)作交直線于點(diǎn),垂足為點(diǎn),連結(jié)、.
(1)求證:;
(2)當(dāng)點(diǎn)是中點(diǎn)時,四邊形是什么特殊四邊形?說明你的理由;
(3)若點(diǎn)是中點(diǎn),當(dāng)四邊形是正方形時,則大小滿足什么條件?
【答案】(1)見解析 (2)見解析 (3)
【解析】
(1)連接,利用同角的余角相等,得到,利用平行四邊形的判定和性質(zhì)得結(jié)論;
(2)先證明四邊形是平行四邊形,再利用直角三角形斜邊的中線等于斜邊的一半說明鄰邊相等,證明該四邊形是菱形;
(3)由平行線的性質(zhì)得出,由正方形的性質(zhì)得出,,即可得出結(jié)論.
解:(1)證明:,
,
,,
,,
,
,
四邊形是平行四邊形,
;
(2)解:四邊形是菱形.理由如下:
由(1)知:四邊形是平行四邊形,
,,
在中,點(diǎn)是的中點(diǎn),
,
又,
,
四邊形是平行四邊形,
,
四邊形是菱形.
(3)解:,理由如下:
,
,
四邊形是正方形,
,,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長40cm的繩子怎樣圍成一個面積為75cm2的矩形?能圍成一個面積為101cm2的矩形嗎?如能,說明圍法;如不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,D為△ABC外一點(diǎn),且AD=AC,則∠BDC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象的兩個交點(diǎn);
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠C=90°,點(diǎn)D為AB上的一點(diǎn),以AD為直徑的⊙O與BC相切于點(diǎn)E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空并完成推理過程.
如圖,E點(diǎn)為DF上的點(diǎn),B點(diǎn)為AC上的點(diǎn),∠1=∠2,∠C=∠D,試說明:AC∥DF.
證明:∵∠1=∠2(已知)
∠1=∠3(對頂角相等)
∴∠2=∠3( )
∴____∥______( )
∴∠C=∠ABD( )
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代換)
∴AC∥DF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料并填空:
①(1﹣)(1+)=1﹣,反過來,得1﹣=(1﹣)(1+)=×;
②(1﹣)(1+)=1﹣,反過來,得1﹣=(1﹣)(1+)= × ;
③(1﹣)(1+)=1﹣,反過來,得1﹣= = ;
利用上面的材料中的方法和結(jié)論計(jì)算下題:
(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com