【題目】多項式6x3﹣11x2+x+4可分解為

【答案】(x﹣1)(3x﹣4)(2x+1)
【解析】解:6x3﹣11x2+x+4,
=6x3﹣6x2﹣5x2+x+4,
=6x2(x﹣1)﹣(5x2﹣x﹣4),
=6x2(x﹣1)﹣(x﹣1)(5x+4),
=(x﹣1)(6x2﹣5x﹣4),
=(x﹣1)(3x﹣4)(2x+1).
將﹣11x2分為﹣6x2和﹣5x2兩部分,原式可化為6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分為一組,﹣5x2+x+4可用十字相乘法分解,分為一組.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格(每個小正方形的邊長均為1)中有四個格點A,B,C,D,以其中一點為原點,網(wǎng)格線所在直線為坐標(biāo)軸(水平線為橫軸),建立平面直角坐標(biāo)系,使其余三個點中存在兩個點關(guān)于一條坐標(biāo)軸對稱.

(1)原點是(填字母A,B,C,D );
(2)若點P在3×3的正方形網(wǎng)格內(nèi)的坐標(biāo)軸上,且與四個格點A,B,C,D,中的兩點能構(gòu)成面積為1的等腰直角三角形,則點P的坐標(biāo)為(寫出可能的所有點P的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.

(1)求證:CE=AD;

(2)當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】( 2 ,4 )x軸的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的一個內(nèi)角為50°,則它的底角是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題一定成立的是 ( )

①對頂角相等; ②同位角相等,兩直線平行;③全等三角形的周長相等;④面積相等的兩個三角形全等

A. ①②③ B. ①④ C. ②④ D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路上學(xué),先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學(xué)校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關(guān)系.

(1)求小麗步行的速度及學(xué)校與公交站臺乙之間的距離;
(2)當(dāng)8≤x≤15時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在凸多邊形中, 四邊形有2條對角線, 五邊形有5條對角線, 經(jīng)過觀察、探索、歸納, 你認(rèn)為凸八邊形的對角線條數(shù)應(yīng)該是多少條? 簡單扼要地寫出你的思考過程.

查看答案和解析>>

同步練習(xí)冊答案