14.某家庭農(nóng)場(chǎng)種植了草莓,每年6月份采集上市.如圖,若毎筐草莓以5千克為基準(zhǔn),超過(guò)的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),記錄如圖,則這4框草莓的總質(zhì)量是(  )
A.19.7千克B.19.9千克C.20.1千克D.20.3千克

分析 先根據(jù)有理數(shù)的加法運(yùn)算法則求出稱(chēng)重記錄的和,然后再加上4筐的標(biāo)準(zhǔn)質(zhì)量計(jì)算即可得解.

解答 解:(-0.1)+(-0.3)+(+0.2)+(+0.3)+5+5+5+5
=0.1+20
=20.1(千克)
故選:C.

點(diǎn)評(píng) 此題主要考查了正負(fù)數(shù)的意義,解題關(guān)鍵是理解“正”和“負(fù)”的相對(duì)性,明確什么是一對(duì)具有相反意義的量.在一對(duì)具有相反意義的量中,先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=100°,則∠DCB的度數(shù)為(  )
A.50°B.80°C.100°D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,在長(zhǎng)方形ABCD中,AB=1,E、F分別為AD、CD的中點(diǎn),沿BE將△ABE折疊,若點(diǎn)A恰好落在BF上,則AD的長(zhǎng)度為(  )
A.$\frac{3}{2}$B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.小明同學(xué)在用描點(diǎn)法畫(huà)二次函數(shù)y=ax2+bx+c圖象時(shí),由于粗心,他算錯(cuò)了一個(gè)y值,列出了下面表格:
 x-1 01 23 
 y=ax2+bx+c53 236
(1)請(qǐng)指出這個(gè)錯(cuò)誤的y值,并說(shuō)明理由;
(2)若點(diǎn)M(m,y1),N(m+4,y2)在二次函數(shù)y=ax2+bx+c圖象上,且m>-1,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:|tan60°-2|+(2015-π)0-(-$\frac{1}{3}$)-2+$\sqrt{(-3)^{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=$\frac{{k}_{2}}{x}$的圖象的一個(gè)交點(diǎn)是(2,3).
(1)求出這兩個(gè)函數(shù)的表達(dá)式;
(2)作出兩個(gè)函數(shù)的草圖,利用你所作的圖形,猜想并驗(yàn)證這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo);
(3)直接寫(xiě)出使反比例函數(shù)值大于正比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.定義新運(yùn)算:對(duì)于任意有理數(shù)a,b,都有a⊕b=a(a-b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5,則(-3)⊕4的值為22.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.比較$\sqrt{7}$+$\sqrt{3}$與$\sqrt{5}$×$\sqrt{2}$的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.化簡(jiǎn):
(1)($3\sqrt{2}$-1)($3\sqrt{2}$+1)=17;
(2)($\sqrt{2}$+1)10($\sqrt{2}$-1)11=$\sqrt{2}$-1;
(3)($\sqrt{6}$-3$\sqrt{3}$)2=33-18$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案