【題目】如圖,∠ABC=50°,BD平分∠ABC,過D作DE∥AB交BC于點E,若點F在AB上,且滿足DF=DE,則∠DFB的度數(shù)為_____.
【答案】50°或130°.
【解析】
由題意可知,點F的位置存在如下圖所示的兩種情況(在點F處或點F′處),根據(jù)圖形結合“已知條件”利用“角的兩邊關于角平分線對稱和等腰三角形的性質”進行分析解答即可.
如下圖,∵DE∥AB,
∴∠DEC=∠ABC=50°,
∴∠DEB=180°-50°=130°,
(1)當點F在AB邊上的F處時,由DF=DE和BD平方∠ABC可知,
此時△BDF和△BDE關于BD對稱,
∴△BDF≌△BDE,
∴∠DFB=∠DEB=130°;
(2)當點F在AB邊上的F′處時,
∵DF′=DE=DF,
∴∠DF′B=∠DFF′,
又∵∠DFF′=180°-∠DFB=50°,
∴∠DF′B=50°;
綜上所述,∠DFB=50°或130°.
故答案為:50°或130°.
科目:初中數(shù)學 來源: 題型:
【題目】四邊形中,對角線、相交于點,下列條件不能判定這個四邊形是平行四邊形的是( 。
A. AB∥DC,AD∥BC B. AO=CO,BO=DO
C. AB∥DC,AD=BC D. AB=DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,添加下列條件仍然不能使ABCD成為菱形的是( 。
A. AB=BC B. AC⊥BD C. ∠ABC=90° D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E,F(xiàn)分別是ABCD的邊BC,AD上的中點,且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數(shù)量關系;
(2)將△CED繞點C逆時針旋轉,當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結論;
(3)在圖②的基礎上,將△CED繞點C繼續(xù)逆時針旋轉,請判斷(2)問中的結論是否發(fā)生變化?若不變,結合圖③寫出證明過程;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點,滿足AE=DF.連接BF與DE相交于點G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,
組別 | 課堂發(fā)言次數(shù)n |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
請結合圖中相關數(shù)據(jù)回答下列問題:
(1)樣本容量是 , 并補全直方圖;
(2)該年級共有學生800人,請估計該年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學生中恰好有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品廠計劃一周生產工藝品2100個,平均每天生產300個,但實際每天生產量與計劃相比有出入.下表是某周的生產情況 (超產記為正,減產記為負):
(1) 寫出該廠星期一生產工藝品的數(shù)量.
(2) 本周產量最多的一天比最少的一天多生產多少個工藝品?
(3) 請求出該工藝品廠在本周實際生產工藝品的數(shù)量.
(4) 已知該廠實行每周計件工資制,每生產一個工藝品可得60元,若超額完成任務,則超過部分每個可得50元,少生產一個扣80元.試求該工藝廠在這一周應付出的工資總額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,將△ABE沿著AE折疊至△AEF的位置,點F在對角線AC上.若BE=3,EC=5,則AB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com