【題目】隨著人們生活質量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
【答案】(1)2500元、2100元(2)10(3)三種
【解析】
(1)設A、B兩種型號凈水器的銷售單價分別為x元、y元,根據(jù)3臺A型號5臺B型號的凈水器收入18000元,4臺A型號10臺B型號的凈水器收入31000元,列方程組求解;
(2)設采購A種型號凈水器m臺,則采購B種型號凈水器(30m)臺,根據(jù)金額不多余54000元,列不等式求解;
(3)設A種型號的凈水器最多購買臺,根據(jù)利潤為12800元,列不等式求出m的值,符合(2)的條件,可知能實現(xiàn)目標.
解:(1)設A,B兩種型號的凈水器的銷售單價分別為元、元,
由題意得:,
解得:,
答:A,B兩種型號的凈水器的銷售單價分別為2500元、2100元;
(2)設A種型號的凈水器最多購買臺,
由題意得:
解得:
答:A種型號的凈水器最多購買10臺;
(3)在(2)的條件下,設A種型號的凈水器最多購買臺,
由題意得:,
解得:,
結合(2)的條件方案有三種,
方案一:A:8臺 B:22臺,
方案二:A:9臺 B:21臺,
方案三:A:10臺 B:20臺.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將銳角為的直角三角板MPN的一個銳角頂點P與邊長為4的正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉,的兩邊分別與正方形的邊BC、DC或其延長線相交于點E、F,連結EF.在三角板旋轉過程中,當的一邊恰好經(jīng)過BC邊的中點時,則EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是射線BM上的一個動點(點P不與點B重合),∠AOB= 30°,∠ABM=60°.當∠OAP=______時,以點A、O、B中的任意兩點和點P為頂點的三角形是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形.
(1)利用尺規(guī)作∠ABC的平分線BE,交AD于E(保留作圖痕跡,不寫作法);
(2)在(1)所作的圖形中,求證:AB=AE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上, ,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉90°至,可使與 重合.因為,所以,點共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中, , ,點分別在邊上, .若都不是直角,則當與滿足等量關系時, 仍然成立,請證明.
(3)聯(lián)想拓展
如圖③,在中, ,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,用三種大小不等的正方形①②③和…個缺角的正方形拼成一個長方形ABCD(不重疊且沒有縫隙),若GH=a,GK=a+1,BF=a﹣2
(1)試用含a的代數(shù)式表示:正方形②的邊長CM的長= ,正方形③的邊長DM的長= ;
(2)求長方形ABCD的周長(用含a的代數(shù)式表示);并求出當a=3時,長方形周長的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列結論:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正確結論的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com