如圖,直線l1:y=2x與直線l2:y=kx+3在同一平面直角坐標(biāo)系內(nèi)交于點(diǎn)P,且直線l2與x軸交于點(diǎn)A.求直線l2的解析式及△OAP的面積.

【答案】分析:把x=1代入直線l1求出交點(diǎn)P坐標(biāo),然后把交點(diǎn)P坐標(biāo)代入直線l2求出k值,從而得到直線l2的解析式,令y=0求出x的值,得到點(diǎn)A的坐標(biāo),再求出OA的長(zhǎng)度,然后根據(jù)三角形的面積公式列式計(jì)算即可.
解答:解:把x=1代入y=2x,得y=2.
∴點(diǎn)P(1,2),
∵點(diǎn)P在直線y=kx+3上,
∴2=k+3,
解得k=-1,
∴直線l2的解析式為y=-x+3;
當(dāng)y=0時(shí),由0=-x+3得x=3,
∴點(diǎn)A(3,0),
∴S△OAP=×3×2=3.
點(diǎn)評(píng):本題考查了兩直線相交的問(wèn)題,根據(jù)交點(diǎn)的橫坐標(biāo)求出點(diǎn)P的坐標(biāo)是解題的關(guān)鍵,也是解答本題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,3),則關(guān)于x的不等式x+1≥mx+n的解集為
x≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l1、l2交于點(diǎn)A,試求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l1:y=2x+4與l2:y=-x-5在同一平面角坐標(biāo)系中相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l1的解析表達(dá)式為y=
12
x+1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)定點(diǎn)A,B,直線l1精英家教網(wǎng)l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l1,l2交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案