【題目】隨著城市化建設(shè)的發(fā)展,交通擁堵成為上班高峰時難以避免的現(xiàn)象.為了解龍泉驛某條道路交通擁堵情況,龍泉某中學同學經(jīng)實地統(tǒng)計分析研究表明:當時,車流速度v(千米/小時)是車流密度x(輛/千米)的一次函數(shù).當該道路的車流密度達到220輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度為95輛/千米時,車流速度為50千米/小時.
(1)當時,求車流速度v(千米/小時)與車流密度x(輛/千米)的函數(shù)關(guān)系式;
(2)為使該道路上車流速度大于40千米/小時且小于60千米/小時,應控制該道路上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時)是單位時間內(nèi)通過該道路上某觀測點的車輛數(shù),即:車流量=車流速度×車流密度.當時,求該道路上車流量y的最大值.此時車流速度為多少?
【答案】(1)v=﹣x+88;(2)70<x<120;(3)車流量y的最大值是每小時4840輛,此時車流速度是44千米/時.
【解析】
(1)當20≤x≤220時,設(shè)車流速度v與車流密度x的函數(shù)關(guān)系式為v=kx+b,再根據(jù)待定系數(shù)法求解即可;
(2)由(1)的解析式建立不等式組求出其解集即可;
(3)設(shè)車流量y與x之間的關(guān)系式為y=vx,當20≤x≤220時表示出相應的二次函數(shù)關(guān)系,由二次函數(shù)的性質(zhì)就可以求出結(jié)果.
解:(1)設(shè)車流速度v與車流密度x的函數(shù)關(guān)系式為v=kx+b,由題意,得
,解得:,
∴當20≤x≤220時,v=﹣x+88;
(2)由題意,得:,解得:70<x<120,
∴應控制該道路上的車流密度在70<x<120范圍內(nèi);
(3)設(shè)車流量y與x之間的關(guān)系式為y=vx,
當20≤x≤220時,y=(﹣x+88)x=﹣(x﹣110)2+4840,
∴當x=110時,y最大=4840,此時千米/時,
∴當車流密度是110輛/千米時,車流量y取得最大值是每小時4840輛,此時車流速度是44千米/時.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,矩形的邊在軸上,點在原點,.若矩形以每秒2個單位長度沿軸正方向作勻速運動.同時點從點出發(fā)以每秒1個單位長度沿的路線作勻速運動,當點運動到點時停止運動,矩形也隨之停止運動.設(shè)點運動時間為(秒).
(1)當時,求出點的坐標;
(2)若的面積為,試求出與之間的函數(shù)關(guān)系式(并寫出相應的自變量的取值范圍).
(3)畫出題(2)所列的函數(shù)的大致圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商經(jīng)銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.
(1)二月份冰箱每臺售價為多少元?
(2)為了提高利潤,該經(jīng)銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設(shè)冰箱為y臺(y≤12),請問有幾種進貨方案?
(3)三月份為了促銷,該經(jīng)銷商決定在二月份售價的基礎(chǔ)上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,在矩形 ABCD 中,AB=8,AD=10,E 是 CD 邊上一點,連接 AE,將矩形 ABCD 沿 AE 折疊,頂點 D 恰好落在 BC 邊上點 F 處,延長 AE 交 BC 的延長線于點G.
(1)求線段 CE 的長;
(2)如圖 2,M,N 分別是線段 AG,DG 上的動點(與端點不重合),且∠DMN=∠DAM, 設(shè) DN=x.
①求證四邊形 AFGD 為菱形;
②是否存在這樣的點 N,使△DMN 是直角三角形?若存在,請求出 x 的值;若不存在, 請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點.
(1)求拋物線的解析式。
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.
角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則=.下面是這個定理的部分證明過程.
證明:如圖2,過C作CE∥DA.交BA的延長線于E.…
任務:(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,則△ABD的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P,Q,給出如下定義:若P,Q為某個三角形的頂點,且邊PQ上的高h,滿足h=PQ,則稱該三角形為點P,Q的“生成三角形”.
(1)已知點A(4,0);
①若以線段OA為底的某等腰三角形恰好是點O,A的“生成三角形”,求該三角形的腰長;
②若Rt△ABC是點A,B的“生成三角形”,且點B在x軸上,點C在直線y=2x﹣5上,則點B的坐標為 ;
(2)⊙T的圓心為點T(2,0),半徑為2,點M的坐標為(2,6),N為直線y=x+4上一點,若存在Rt△MND,是點M,N的“生成三角形”,且邊ND與⊙T有公共點,直接寫出點N的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com