【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點N,連接AC,點E在AB上,且AE=CE.
(1)求證:AC2=AEAB;
(2)過點B作⊙O的切線交EC的延長線于點P,試判斷PB與PE是否相等,并說明理由;
(3)設(shè)⊙O半徑為4,點N為OC中點,點Q在⊙O上,求線段PQ的最小值.
【答案】(1)證明見解析;(2)PB=PE;(3).
【解析】
試題分析:(1)證明△AEC∽△ACB,列比例式可得結(jié)論;
(2)如圖2,證明∠PEB=∠COB=∠PBN,根據(jù)等角對等邊可得:PB=PE;
(3)如圖3,先確定線段PQ的最小值時Q的位置:因為OQ為半徑,是定值4,則PQ+OQ的值最小時,PQ最小,當(dāng)P、Q、O三點共線時,PQ最小,先求AE的長,從而得PB的長,最后利用勾股定理求OP的長,與半徑的差就是PQ的最小值.
試題解析:(1)如圖1,連接BC,∵CD為⊙O的直徑,AB⊥CD,∴,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AEAB;
(2)PB=PE,理由是:
如圖2,連接OB,∵PB為⊙O的切線,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE;
(3)如圖3,∵N為OC的中點,∴ON=OC=OB,Rt△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB為等邊三角形,∵Q為⊙O任意一點,連接PQ、OQ,因為OQ為半徑,是定值4,則PQ+OQ的值最小時,PQ最小,當(dāng)P、Q、O三點共線時,PQ最小,∴Q為OP與⊙O的交點時,PQ最小,∠A=∠COB=30°,∴∠PEB=2∠A=60°,∠ABP=90°﹣30°=60°,∴△PBE是等邊三角形,Rt△OBN中,BN==,∴AB=2BN=,設(shè)AE=x,則CE=x,EN=﹣x,Rt△CNE中,,x=,∴BE=PB==,Rt△OPB中,OP= = =,∴PQ=﹣4=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大報告指出:“建設(shè)生態(tài)文明,是關(guān)系人民福祉、關(guān)乎民族未來的長遠大計”,這些年黨和政府在生態(tài)文明的發(fā)展進程上持續(xù)推進,在“十一五”期間,中國減少二氧化碳排放1 460 000 000噸,贏得國際社會廣泛贊譽.將1 460 000 000用科學(xué)記數(shù)法表示為( )
A.146×107
B.1.46×107
C.1.46×109
D.1.46×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線 與x軸相交于點A,與y軸相交于點B.
(1)直接寫出A點的坐標(biāo);
(2)當(dāng)x 時,y≤4;
(3)過B點作直線BP與x軸相交于P,若OP=2OA時,求ΔABP的面積。
(4)在y軸上是否存在E點,使得ΔABE為等腰三角形,若存在,直接寫出滿足條件的E點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是兩位數(shù),b是一位數(shù),把a直接寫在b的前面,就成為一個三位數(shù).這個三位數(shù)可表示成 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是多少人?
(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;
(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不解方程,判斷方程2x2﹣3x+1=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖,回答下列問題:
(1)本次調(diào)查學(xué)生共 人,a= ,并將條形圖補充完整;
(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?
(3)學(xué)校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com