如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,).
(1)求拋物線的解析式;
(2)若D是拋物線的頂點(diǎn),E是拋物線的對(duì)稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對(duì)稱,求證:∠CFE=∠AFE;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有請(qǐng)求出所有符和條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

【答案】分析:(1)設(shè)拋物線解析式為y=ax2+bx+c,將A、B、C三點(diǎn)坐標(biāo)代入,列方程組求拋物線解析式;
(2)求直線AC的解析式,確定E點(diǎn)坐標(biāo),根據(jù)對(duì)稱性求F點(diǎn)坐標(biāo),分別求直線AF,CF的解析式,確定兩直線與x軸的交點(diǎn)坐標(biāo),判斷兩個(gè)交點(diǎn)關(guān)于拋物線對(duì)稱軸對(duì)稱即可;
(3)存在.由∠CFE=∠AFE=∠FAP,△AFP與△FDC相似時(shí),頂點(diǎn)A與頂點(diǎn)F對(duì)應(yīng),根據(jù)△AFP∽△FDC,△AFP∽△FCD,兩種情況求P點(diǎn)坐標(biāo).
解答:(1)解:設(shè)拋物線解析式為y=ax2+bx+c,將A、B、C三點(diǎn)坐標(biāo)代入,得
,
解得,
∴拋物線解析式為y=x2-4x+6;

(2)證明:設(shè)直線AC的解析式y(tǒng)=mx+n,
將A、C兩點(diǎn)坐標(biāo)代入,得,
解得,
∴y=-x+6,
∵y=x2-4x+6=(x-4)2-2,
∴D(4,-2),E(4,4),
∵F與E關(guān)于D對(duì)稱,
∴F(4,-8),則直線AF的解析式為y=-x+6,CF的解析式為y=x-22,
∴直線AF,CF與x軸的交點(diǎn)坐標(biāo)分別為(,0),(,0),
∵4-=-4,
∴兩個(gè)交點(diǎn)關(guān)于拋物線對(duì)稱軸x=4對(duì)稱,
∴∠CFE=∠AFE;

(3)解:存在.
設(shè)P(0,d),則AP=|6-d|,AF==2,
FD=-2-(-8)=6,CF==,
∵∠PAF=∠CFD,
∴點(diǎn)P位于點(diǎn)A的下方,
當(dāng)△AFP∽△FDC時(shí),=,即=,解得d=(舍去)或-,
當(dāng)△AFP∽△FCD時(shí),=,即=,解得d=-2或14(舍去),
∴P點(diǎn)坐標(biāo)為(0,-)或(0,-2).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)已知條件求拋物線解析式,根據(jù)拋物線的對(duì)稱性,相似三角形的知識(shí)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式及對(duì)稱軸;
(2)點(diǎn)C′是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),證明直線y=-
4
3
(x+1)
必經(jīng)過點(diǎn)C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,
52
).
(1)求拋物線的解析式;
(2)若D是拋物線的頂點(diǎn),E是拋物線的對(duì)稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對(duì)稱,求證:∠CFE=∠AFE;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有請(qǐng)求出所有符和條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(-1,0)、B(3,0)、C(0,-3).
(1)求該拋物線的解析式及其頂點(diǎn)的坐標(biāo);
(2)若P是拋物線上C、B兩點(diǎn)之間的一動(dòng)點(diǎn),請(qǐng)連接CP、BP,是否存在點(diǎn)P,使得四邊形OBPC的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(6,0),直線AB交拋物線的對(duì)稱軸于點(diǎn)F,直線AC交拋物線對(duì)稱軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)求證:點(diǎn)E與點(diǎn)F關(guān)于頂點(diǎn)D對(duì)稱;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有,請(qǐng)求出所有合條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)南市天橋區(qū)九年級(jí)中考三模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,). 若D是拋物線的頂點(diǎn),E是拋物線的對(duì)稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對(duì)稱.

(1)求拋物線的解析式;

(2)求證:∠CFE=∠AFE;

(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似,若有,請(qǐng)求出所有合條件的點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案