如圖,直線與直線在同一平面直角坐標(biāo)系內(nèi)交于點(diǎn)P,且直線與x軸交于點(diǎn)A. 求直線的解析式及△OAP的面積.
解析:
解:把代入,得.
∴點(diǎn)P(1,2). …… …………………1分
∵點(diǎn)P在直線上,
. 解得 .…………2分
. …………………………3分
當(dāng)時(shí),由.
∴點(diǎn)A(3,0).     …………………………………………………………………………4分
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(16,0),與y軸正半軸交于點(diǎn)E(0,16),邊長為16的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q(運(yùn)動(dòng)時(shí),點(diǎn)P不與A,B兩點(diǎn)重合,點(diǎn)Q不與C,D兩點(diǎn)重合).設(shè)點(diǎn)A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時(shí),請(qǐng)直接寫出m的取值范圍;
③當(dāng)n=7時(shí),是否存在m的值使點(diǎn)P為AB邊的中點(diǎn)?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•日照)問題背景:
如圖(a),點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使AC與BC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連接A B′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.

(1)實(shí)踐運(yùn)用:
如圖(b),已知,⊙O的直徑CD為4,點(diǎn)A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為
2
2
2
2

(2)知識(shí)拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,E、F分別是線段AD和AB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等邊三角形ABC的邊AB在直線l上,動(dòng)點(diǎn)D也在直線l上(不與A,B點(diǎn)重合),△ADE為等邊三角形.
(1)如圖①,當(dāng)點(diǎn)D在線段BA的延長線上且△ADE與△ABC在直線l的同側(cè)時(shí),試猜想線段BE與CD的大小關(guān)系為
BE=CD
BE=CD

(2)如圖②,當(dāng)點(diǎn)D在線段BA上且ADE與ABC在直線l異測時(shí),(1)中的結(jié)論是否仍然成立?若不成立,請(qǐng)說明結(jié)論發(fā)生了怎樣的變化;若成立,說明理由,并求出此時(shí)線段BE與CD所在直線的夾角α(0°<α<90°)
(3)當(dāng)點(diǎn)D在線段AB的延長線上且△ADE與△ABC仍然在直線l的異測時(shí),試在圖中畫③出相應(yīng)的圖形,并直接判斷此時(shí)BE與CD的關(guān)系(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)完成下面的證明:
已知:如圖1,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD.
求證:∠EGF=90°.
證明:∵HG∥AB,(已知) 
∴∠1=∠3. (
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
兩直線平行,內(nèi)錯(cuò)角相等
兩直線平行,內(nèi)錯(cuò)角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
兩直線平行,同旁內(nèi)角互補(bǔ)
兩直線平行,同旁內(nèi)角互補(bǔ)

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分線定義
角平分線定義

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分線定義
角平分線定義

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代換
等量代換
).即∠EGF=90°.
(2)如圖2,已知∠ACB=90°,那么∠A的余角是哪個(gè)角呢?答:
∠B
∠B
;
小明用三角尺在這個(gè)三角形中畫了一條高CD(點(diǎn)D是垂足),得到圖3,
①請(qǐng)你幫小明在圖中畫出這條高;
②在圖中,小明通過仔細(xì)觀察、認(rèn)真思考,找出了三對(duì)余角,你能幫小明把它們寫出來嗎?答:a
∠ACD與∠BCD
∠ACD與∠BCD
;b
∠A與∠ACD
∠A與∠ACD
;c
∠B與∠BCD
∠B與∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明還發(fā)現(xiàn)了另外兩對(duì)相等的角,請(qǐng)你也仔細(xì)地觀察、認(rèn)真地思考分析,試一試,能發(fā)現(xiàn)嗎?把它們寫出來,并請(qǐng)說明理由.
(3)在直角坐標(biāo)系中,第一次將△OAB變換成OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)為
(16,3)
(16,3)
,B4的坐標(biāo)為
(32,0)
(32,0)

②按以上規(guī)律將△OAB進(jìn)行n次變換得到△AnBn,則可知An的坐標(biāo)為
(2n,3)
(2n,3)
,Bn的坐標(biāo)為
(2n+1,0)
(2n+1,0)

③可發(fā)現(xiàn)變換的過程中A、A1、A2、…、An縱坐標(biāo)均為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面是這樣,那曲面呢?我們?cè)倏匆活}(如圖1),從A到B,怎樣走最近呢?與前兩題相同,把圓柱體展開(如圖2),此時(shí),只有A點(diǎn)位于與長方形的交界處時(shí),才是最短路徑,且只有一條最短路徑AB.

從上面幾題可以看出立體圖形中的最短路徑問題,都可先把立題圖形轉(zhuǎn)化成平面圖形再思考.而且得出正方體有6條最短路徑;長方體有2條最短路徑;圓柱有1條最短路徑.這短短的八個(gè)字還真是奧妙無窮!
探究問題一:已知,A,B在直線L的兩側(cè),在L上求一點(diǎn),使得PA+PB最小.(如圖所示)

探究問題二:已知,A,B在直線L的同一側(cè),在L上求一點(diǎn),使得PA+PB最小.(如圖所示)

探究問題三:A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最。ㄈ鐖D所示)

探究問題四:AB是銳角MON內(nèi)部一條線段,在角MON的兩邊OM,ON上各取一點(diǎn)C,D組成四邊形,使四邊形周長最小.(如圖所示)

查看答案和解析>>

同步練習(xí)冊(cè)答案