分析 連結(jié)BD,作DM⊥AB于M,DN⊥BC于N,根據(jù)三角函數(shù)可求AM=2,DM=2$\sqrt{3}$,DN=2$\sqrt{3}$,NC=2,通過HL證明Rt△BDM≌Rt△BDN,根據(jù)全等三角形的性質(zhì)可得BN=BM,再根據(jù)線段的和差關(guān)系即可求解.
解答 解:連結(jié)BD,作DM⊥AB于M,DN⊥BC于N,
∵∠BAD=120°,
∴∠MAD=180°-120°=60°,
∵AD=4,
∴AM=2,DM=2$\sqrt{3}$,
∵∠C=60°,
∴DN=2$\sqrt{3}$,NC=2,
在Rt△BDM與Rt△BDN中,
$\left\{\begin{array}{l}{DM=DN}\\{BD=BD}\end{array}\right.$,
∴Rt△BDM≌Rt△BDN(HL),
∴BN=BM=2+2=4,
∴BC=BN+NC=6.
故答案為:6.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì),三角函數(shù),關(guān)鍵是作出輔助線,通過HL證明Rt△BDM≌Rt△BDN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | tan∠ADB=$\sqrt{2}$-1 | B. | ∠DEF=67.5° | C. | ∠AGB=∠BEF | D. | cos∠AGB=$\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com