(河南省)一個數(shù)的平方等于64,則這個數(shù)的立方根是:________.

答案:-2,2$2,-2
解析:

解:設這個數(shù)為x.所以x=±8.又根據(jù)立方根的定義,可得這個數(shù)即±8的立方根為±2,故應填±2


提示:

本題考點:準確求一個數(shù)的平方根、立方根


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、一個數(shù)的平方等于它的相反數(shù),則這個數(shù)是
0或-1
,一個數(shù)的立方等于它本身,則這個數(shù)是
0,1或-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2011•寶安區(qū)一模)閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則a=(
a
)2
.如:2=(
2
)2
,3=(
3
)3
等.
例:已知a>0,求證:a+
1
2a
2

證明:∵a>0,∴a+
1
2a
=(
a
)2+(
1
2a
)2≥2×
a
×
1
2a
=
2

a+
1
2a
2
,當且僅當a=
2
2
時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則數(shù)學公式.如:2=數(shù)學公式數(shù)學公式等.
例:已知a>0,求證:數(shù)學公式
證明:∵a>0,∴數(shù)學公式
數(shù)學公式,當且僅當數(shù)學公式時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省深圳市寶安區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則.如:2=等.
例:已知a>0,求證:
證明:∵a>0,∴
,當且僅當時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

同步練習冊答案