【題目】解下列方程組,在數(shù)軸表示解
(1)
(2) .
【答案】
(1)解:原方程整理得: ,
①×2﹣②,得:11y=22,
解得:y=2,
將y=2代入①,得:2x+6=14,
解得:x=4,
∴方程組的解為 ;
(2)解:解不等式2x+5≤3(x+2),得:x≥﹣1,
解不等式 <1+ ,得:x<9,
∴不等式組的解集為﹣1≤x<9,
將解集表示在數(shù)軸上如下:
【解析】(1)根據(jù)解二元一次方程組的方法,得到方程組的解即可;
(2)先根據(jù)一元一次不等式組求得x 的解集,再在數(shù)軸表示出來即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解二元一次方程組(二元一次方程組:①代入消元法;②加減消元法),還要掌握不等式的解集在數(shù)軸上的表示(不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把文字翻譯成數(shù)學(xué)符號(hào),構(gòu)建方程組模型是解此類題的關(guān)鍵;方案型問題就是要構(gòu)建雙邊不等式,有幾個(gè)整數(shù)解就有幾種方案.某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價(jià)各為多少元.
(2)甲公司擬向該店購買A,B兩種型號(hào)的新能源汽車共6輛,購車費(fèi)不少于130萬元,且不超過140萬元.則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種植物花粉的直徑為0.00035米,用科學(xué)記數(shù)法表示該種花粉的直徑是( )
A. 3.5×104米 B. 3.5×10-4米 C. 3.5×10-5米 D. 3.5×10-6米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)過后,永川區(qū)某校在本校學(xué)生中做了一次抽樣調(diào)查,并把調(diào)查結(jié)果分成三種類型:A.已知道哪一天是母親節(jié)的;B.知道但沒有任何行動(dòng)的;C.知道并問候母親的.如圖是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖(部分),根據(jù)圖中提供的信息,回答下列問題:
①已知A類學(xué)生占被調(diào)查學(xué)生人數(shù)的30%,則被調(diào)查學(xué)生有多少人?
②計(jì)算B類學(xué)生的人數(shù)并根據(jù)計(jì)算結(jié)果補(bǔ)全統(tǒng)計(jì)圖;
③如果該校共有學(xué)生2000人,試估計(jì)這個(gè)學(xué)校學(xué)生中有多少人知道母親節(jié)并問候了母親.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 18000元 |
第二周 | 4臺(tái) | 10臺(tái) | 31000元 |
(1)求A,B兩種型號(hào)的凈水器的銷售單價(jià);
(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購這兩種型號(hào)的凈水器共30臺(tái),求A種型號(hào)的凈水器最多能采購多少臺(tái)?
(3)在(2)的條件下,公司銷售完這30臺(tái)凈水器能否實(shí)現(xiàn)利潤為12800元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com