【題目】小明同學(xué)在尋找下面圖中小圓圈個(gè)數(shù)的規(guī)律時(shí),利用了下面圖中“分塊計(jì)數(shù)法”,根據(jù)小明的方法,猜想并判斷下列說法不正確的是( )
A.第5個(gè)圖形有61個(gè)小圓圈B.第6個(gè)圖形有91個(gè)小圓圈
C.某個(gè)圖小圓圈的個(gè)數(shù)可以為271D.某個(gè)圖小圓圈的個(gè)數(shù)可以為621
【答案】D
【解析】
設(shè)第n個(gè)圖形中小圓圈的個(gè)數(shù)為an個(gè)(n為正整數(shù)),根據(jù)給定幾個(gè)圖形中小圓圈數(shù)量的變化可找出變化規(guī)律“an=3n23n+1(n為正整數(shù))”,分別代入n=5,n=6,an=271,an=621求出an(或n)即可得出結(jié)論.
設(shè)第n個(gè)圖形中小圓圈的個(gè)數(shù)為an個(gè)(n為正整數(shù)).
觀察圖形,可知:a1=1,a2=7=2×3+1,a3=19=3×6+1,a4=37=4×9+1,…,
∴an=n3(n1)+1=3n23n+1(n為正整數(shù)).
當(dāng)n=5時(shí),a5=3×523×5+1=61;
當(dāng)n=6時(shí),a6=3×623×6+1=91;
當(dāng)3n23n+1=271時(shí),解得:n1=9(舍去),n2=10;
當(dāng)3n23n+1=621時(shí),解得:n1=(舍去),n2=.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,點(diǎn)是延長(zhǎng)線上一點(diǎn)過點(diǎn)作的切線,切點(diǎn)為.過點(diǎn)作于點(diǎn),延長(zhǎng)交于點(diǎn).連結(jié),,,.若,.
(1)求的長(zhǎng)。
(2)求證:是的切線.
(3)試判斷四邊形的形狀,并求出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F(xiàn)對(duì)應(yīng),若以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形,則m的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全國(guó)第二屆青年運(yùn)動(dòng)會(huì)是山西省歷史上第一次舉辦的大型綜合性運(yùn)動(dòng)會(huì),太原作為主賽區(qū),新建了很多場(chǎng)館,其中在汾河?xùn)|岸落成了太原水上運(yùn)動(dòng)中心,它的終點(diǎn)塔及媒體中心是一個(gè)以“大帆船”造型(如圖1),外觀極具創(chuàng)新,這里主要承辦賽艇、皮劃艇、龍舟等項(xiàng)目的比賽.“青春”數(shù)學(xué)興趣小組為了測(cè)量“大帆船”AB的長(zhǎng)度,他們站在汾河西岸,在與AB平行的直線l上取了兩個(gè)點(diǎn)C、D,測(cè)得CD=40m,∠CDA=120°,∠ACB=18.5°,∠BCD=26.5°,如圖2.請(qǐng)根據(jù)測(cè)量結(jié)果計(jì)算“大帆船”AB的長(zhǎng)度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin26.5°≈0.45,tan26.5°≈0.50,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化妝品店老板到廠家購(gòu)A、B兩種品牌店化妝品,若購(gòu)進(jìn)品牌的化妝品5套,品牌的化妝品6套,需要950元;若購(gòu)進(jìn)品牌的化妝品3套,品牌的化妝品2套,需要450元.
(1)求、兩種品牌的化妝品每套進(jìn)價(jià)分別為多少元?
(2)若銷售1套品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場(chǎng)需求,化妝品店老板決定,購(gòu)進(jìn)品牌化妝品的數(shù)量比購(gòu)進(jìn)品牌的化妝品數(shù)量的2倍還多4套,且品牌化妝品最多可購(gòu)進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進(jìn)貨方案?如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn)且AE=BF,連接CE、AF交于點(diǎn)H,連接DH交AG于點(diǎn)O,則下列結(jié)論①△ABF≌△CAE;②∠AHC=120°;③AE+CH>CD,中正確的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交軸、軸于點(diǎn)C、D,且S△PBD=4, .
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,點(diǎn)、在坐標(biāo)軸上, 是繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到的,點(diǎn)在軸上,直線交軸于點(diǎn),交于點(diǎn),線段,.
(1)求直線的解析式;
(2)求的面積;
(3)點(diǎn)在軸上,平面內(nèi)是否存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com