【題目】如圖,拋物線 y=﹣x2+bx+c 與 x 軸交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C ,點(diǎn) A 的坐標(biāo)為(-1,0),點(diǎn) C 的坐標(biāo)為(0,3),點(diǎn)D和點(diǎn) C 關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線 AD 與 y 軸交于點(diǎn) E .
(1)求拋物線的解析式;
(2)如圖,直線 AD 上方的拋物線上有一點(diǎn) F,過(guò)點(diǎn) F 作 FG⊥AD 于點(diǎn) G,作 FH 平行于 x 軸交直線 AD 于點(diǎn) H,求△FGH 周長(zhǎng)的最大值.
【答案】(1)y=﹣x2+2x+3;(2)△FGH周長(zhǎng)最大值為:.
【解析】
(1)利用待定系數(shù)法求解即可;
(2)根據(jù)拋物線的解析式可得對(duì)稱軸的方程,即可求出點(diǎn)D的坐標(biāo),利用待定系數(shù)法可得直線AD的解析式,即可求出點(diǎn)E的坐標(biāo),得△OAE是等腰直角三角形,由FH 平行于 x 軸可得△FGH為等腰直角三角形過(guò)點(diǎn) F 作 FM⊥x 軸交 AD 于 M,可得△FMH是等腰直角三角形,即可得出△FGH的周長(zhǎng)等于△FGM的周長(zhǎng),配方可求出FM的最大值,即可得出△FGM周長(zhǎng)的最大值,進(jìn)而可得答案.
(1)將 (-1,0), (0,3)代入y=﹣x2+bx+c ,得:
-1-b+c=0,c=3,解得:b=2,c=3,
即拋物線的解析式為:y=﹣x2+2x+3.
(2)∵y=﹣x2+2x+3
=﹣(x﹣1)2+4,
∴拋物線對(duì)稱軸為直線 x=1,點(diǎn) D 和點(diǎn) C 關(guān)于直線x=1對(duì)稱,
∴D(2,3),
設(shè)直線 AD 的解析式為 y=kx+b,
把 A(﹣1,0),D(2,3)代入得:
,解得,
∴直線AD的解析式為:y=x+1;
∴E(0,1),
∵OA=OE,
∴△OAE 為等腰直角三角形,
∴∠EAO=45°,
∵FH∥OA,△FGH 為等腰直角三角形,
過(guò)點(diǎn) F 作 FM⊥x 軸交 AD 于 M,如圖,
可得FM=FH,
∵FG=GH=FH=FM,
∴C△FGH=(1+)FM,
設(shè)F(m,﹣m2+2m+3),則M(m,m+1),FM=﹣m2+m+2
∴C△FGH=(1+)FM,
=(1+)(﹣m2+m+2)
=﹣(1+)
∴當(dāng) x=時(shí),△FGH周長(zhǎng)由最大值,最大值為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器商場(chǎng)銷售A,B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40元. 商場(chǎng)銷售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)76元;銷售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利120元.
(1)求商場(chǎng)銷售A,B兩種型號(hào)計(jì)算器的銷售價(jià)格分別是多少元?(利潤(rùn)=銷售價(jià)格﹣進(jìn)貨價(jià)格)
(2)商場(chǎng)準(zhǔn)備用不多于2500元的資金購(gòu)進(jìn)A,B兩種型號(hào)計(jì)算器共70臺(tái),問(wèn)最少需要購(gòu)進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家在購(gòu)進(jìn)一款產(chǎn)品時(shí),由于運(yùn)輸成本及產(chǎn)品成本的提高,該產(chǎn)品第 x 天的成本 y(元/件)與 x(天)之間的關(guān)系如圖所示,并連續(xù) 60 天均以 80 元/件的價(jià)格出售, 第 x 天該產(chǎn)品的銷售量 z(件)與 x(天)滿足關(guān)系式 z=x+15.
(1)第 25 天,該商家的成本是 元,獲得的利潤(rùn)是 元;
(2)設(shè)第 x 天該商家出售該產(chǎn)品的利潤(rùn)為 w 元.
①求 w 與 x 之間的函數(shù)關(guān)系式;
②求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,連接OC交⊙O于E,過(guò)點(diǎn)A作AF⊥AC于F交⊙O于D,連接DE,BE,BD
(1)求證:∠C=∠BED;
(2)若AB=12,tan∠BED=,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+4與x軸,y軸分別交于點(diǎn)B,C,點(diǎn)A在x軸負(fù)半軸上,且OA=OB,拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)P作PD⊥BC,垂足為D,用含m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x﹣4與拋物線y=+bx+c交于坐標(biāo)軸上兩點(diǎn)A、C,拋物線與x軸另一交點(diǎn)為點(diǎn)B;
(1)求拋物線解析式;
(2)若動(dòng)點(diǎn)D在直線AC下方的拋物線上;
①作直線BD,交線段AC于點(diǎn)E,交y軸于點(diǎn)F,連接AD;求△ADE與△CEF面積差的最大值,及此時(shí)點(diǎn)D的坐標(biāo);
②如圖2,作DM⊥直線AC,垂足為點(diǎn)M,是否存在點(diǎn)D,使△CDM中某個(gè)角恰好是∠ACO的一半?若存在,直接寫出點(diǎn)D的橫坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC邊長(zhǎng)是定值,點(diǎn)O是它的外心,過(guò)點(diǎn)O任意作一條直線分別交AB,BC于點(diǎn)D,E.將△BDE沿直線DE折疊,得到△B′DE,若B′D,B′E分別交AC于點(diǎn)F,G,連接OF,OG,則下列判斷錯(cuò)誤的是( 。
A. △ADF≌△CGE
B. △B′FG的周長(zhǎng)是一個(gè)定值
C. 四邊形FOEC的面積是一個(gè)定值
D. 四邊形OGB'F的面積是一個(gè)定值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1,可以得到這個(gè)等式,請(qǐng)解答下列問(wèn)題:
(1)寫出圖2中所表示的數(shù)學(xué)等式 .
(2)根據(jù)整式乘法的運(yùn)算法則,通過(guò)計(jì)算驗(yàn)證上述等式.
(3)利用(1)中得到的結(jié)論,解決下面的問(wèn)題:
若,,則 .
(4)小明同學(xué)用圖3中張邊長(zhǎng)為的正方形,張邊長(zhǎng)為的正方形,張長(zhǎng)寬分別為、的長(zhǎng)方形紙片拼出一個(gè)面積為的長(zhǎng)方形,則 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com