【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
【答案】(1)∠AED=120°;(2)π;(3)n=12.
【解析】
(1)連接BD,根據(jù)圓的內(nèi)接四邊形的性質(zhì)得出∠BAD的度數(shù),由AB=AD,可證得△ABD是等邊三角形,求得∠ABD=60°,再利用圓的內(nèi)接四邊形的性質(zhì),即可求得∠E的度數(shù);
(2)連接OA,由圓周角定理求出∠AOD的度數(shù),由弧長公式即可得出的長;
(3)首先連接OA,由∠ABD=60°,利用圓周角定理,即可求得∠AOD的度數(shù),繼而求得∠AOE的度數(shù),即可得出結(jié)果.
(1)連接BD,如圖1所示.
∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠BAD+∠C=180°.
∵∠C=120°,
∴∠BAD=60°.
∵AB=AD,
∴△ABD是等邊三角形,
∴∠ABD=60°.
∵四邊形ABDE是⊙O的內(nèi)接四邊形,
∴∠AED+∠ABD=180°,
∴∠AED=120°.
(2)連接OA,OD,如圖2.
∵∠AOD=2∠ABD=120°,
∴的長=.
(3)如圖所示.
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD-∠DOE=30°,
∴n==12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】( 1)計(jì)算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程+px+q=0的兩個(gè)根是,,那么+=-p, =q,反過來,如果+=-p, =q,那么以,為兩根的一元二次方程是+px+q=0.請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程+mx+n=0(n≠0),求出—個(gè)一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).
(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.
(3)已知a、b、c均為實(shí)數(shù),且a+b+c=0,abc=16,求正數(shù)c的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中實(shí)線所示,函數(shù)y=|a(x﹣1)2﹣1|的圖象經(jīng)過原點(diǎn),小明同學(xué)研究得出下面結(jié)論:
①a=1;②若函數(shù)y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個(gè)實(shí)數(shù)解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數(shù)圖象的四個(gè)不同點(diǎn),且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結(jié)論有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE∥OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)D為AB中點(diǎn),延長DE交x軸于點(diǎn)F,在ED的延長線上取點(diǎn)G,使DG=DF,連接BG.
①BG與y軸的位置關(guān)系怎樣?說明理由; ②求OF的長;
(3)如圖2,若點(diǎn)F的坐標(biāo)為(10,10),E是y軸的正半軸上一動(dòng)點(diǎn),P是直線AB上一點(diǎn),且P的橫坐標(biāo)為6,是否存在點(diǎn)E使△EFP為等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若點(diǎn)P與△ABC三個(gè)頂點(diǎn)中的任意兩個(gè)頂點(diǎn)連接形成的三角形都是等腰三角形,則稱點(diǎn)P是△ABC的巧妙點(diǎn).
(1)如圖1,求作△ABC的巧妙點(diǎn)P(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點(diǎn)P (尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數(shù)是 .
(3)等邊三角形的巧妙點(diǎn)的個(gè)數(shù)有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,,,,四點(diǎn)在反比例函數(shù)的圖象上,線段,都過原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)點(diǎn)縱坐標(biāo)為,連接,,,.
求該反比例函數(shù)的解析式;
當(dāng)時(shí),寫出的取值范圍;
求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com