【題目】如圖,在銳角△ABC中,延長BC到點(diǎn)D,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,MN分別交∠ACB、∠ACD的平分線于E,F兩點(diǎn),連接AE、AF,在下列結(jié)論中:①OE=OF;②CE=CF;③若CE=12,CF=5,則OC的長為6;④當(dāng)AO=CO時(shí),四邊形AECF是矩形,其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】C
【解析】
①只要證明OC=OE,OC=OF即可.
②首先證明∠ECF=90°,若EC=CF,則∠OFC=45°,顯然不可能,故②錯(cuò)誤,
③利用勾股定理可得EF=13,推出OC=6.5,故③錯(cuò)誤.
④根據(jù)矩形的判定方法即可證明.
∵MN∥CB,
∴∠OEC=∠BCE,∠OFC=∠ACF
∵∠ACE=∠BCE,∠ACF=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OC=OE=OF,故①正確,
∵∠BCD=180°,
∴∠ECF=90°,
若EC=CF,則∠OFC=45°,顯然不可能,故②錯(cuò)誤,
∵∠ECF=90°,EC=12,CF=5,
∴EF==13,
∴OC=EF=6.5,故③錯(cuò)誤,
∴OE=OF,OA=OC,
∴四邊形AECF是平行四邊形,
∵∠ECF=90°,
∴四邊形AECF是矩形.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝超市購進(jìn)單價(jià)為30元的童裝若干件,物價(jià)部門規(guī)定其銷售單價(jià)不低于每件30元,不高于每件60元.銷售一段時(shí)間后發(fā)現(xiàn):當(dāng)銷售單價(jià)為60元時(shí),平均每月銷售量為80件,而當(dāng)銷售單價(jià)每降低10元時(shí),平均每月能多售出20件.同時(shí),在銷售過程中,每月還要支付其他費(fèi)用450元.設(shè)銷售單價(jià)為x元,平均月銷售量為y件.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)為多少元時(shí),銷售這種童裝每月可獲利1800元?
(3)當(dāng)銷售單價(jià)為多少元時(shí),銷售這種童裝每月獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,與軸的正半軸重合,,,動(dòng)點(diǎn)、分別從、兩點(diǎn)同時(shí)出發(fā),沿方向以每秒1個(gè)單位,沿,方向以每秒2個(gè)單位運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為,當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接、,請(qǐng)解決一下問題:
(1)求菱形的面積
(2)若為直角三角形,求運(yùn)動(dòng)時(shí)間的值;
(3)是否存在的面積是菱形面積的,若存在,求出滿足條件的的值,不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-6x+8.求:
(1)拋物線與x軸和y軸相交的交點(diǎn)坐標(biāo);
(2)拋物線的頂點(diǎn)坐標(biāo);
(3)畫出此拋物線圖象,利用圖象回答下列問題:
①方程x2-6x+8=0的解是什么?
②x取什么值時(shí),函數(shù)值大于0?
③x取什么值時(shí),函數(shù)值小于0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校院墻上部是由段形狀相同的拋物線形護(hù)欄組成的,為了牢固起見,每段護(hù)欄需要間隔,加設(shè)一根不銹鋼支柱,防護(hù)欄的最高點(diǎn)據(jù)護(hù)欄底部(如圖),則這條護(hù)欄要不銹鋼支柱總長度至少為( )
A. 50m B. 100m C. 120m D. 160m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y =-x2+(k-2)x+k+1.
(1)求證:該函數(shù)的圖象與x軸一定有兩個(gè)交點(diǎn);
(2)當(dāng)k =1時(shí),設(shè)該函數(shù)的圖象與x軸的交點(diǎn)為A、B(A在B的左側(cè)),與y軸的交點(diǎn)為C,點(diǎn)P為其圖象的對(duì)稱軸上一動(dòng)點(diǎn),是否存在點(diǎn)P,使BP+CP最小,若存在,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO沿x軸向右滾動(dòng)到△AB1C1的位置,再到△A1B1C2的位置……依次進(jìn)行下去,若已知點(diǎn)A(4,0),B(0,3),則點(diǎn)C100的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1表示的是某手機(jī)商店2018年7~12月各月銷售總額的統(tǒng)計(jì)圖,如圖2表示的是該商店“華為品牌”手機(jī)各月占商店銷售總額的百分比統(tǒng)計(jì)圖。已知7月份“華為品牌”手機(jī)的月銷售額為12萬元,觀察如圖1、如圖2,解析下列問題:
(1)求該手機(jī)商店7月份的銷售總額。
(2)小明觀察圖2認(rèn)為,12月份“華為品牌”手機(jī)的銷售額比11月份減少了。你同意他的看法嗎?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com