【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針方向沿△ABC的三邊運(yùn)動(dòng).求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?
【答案】(1)1s;(2)①點(diǎn)Q的運(yùn)動(dòng)速度為cm/s時(shí),能使△BPD≌△CPQ;②點(diǎn)P、Q在AC邊上相遇,相遇地點(diǎn)距離C點(diǎn)4cm處.
【解析】
(1)①根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中的邊的長,根據(jù) 判定兩個(gè)三角形全等.
②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)的運(yùn)動(dòng)速度;
(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點(diǎn)的速度快,且在點(diǎn)的前邊,所以要想第一次相遇,則應(yīng)該比點(diǎn)多走等腰三角形的兩個(gè)邊長.
(1)①全等.理由如下:
證明:∵t=1秒,
∴BP=CQ=1×1=1 cm,
∵AB=6cm,
點(diǎn)D為AB的中點(diǎn),
∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,
∴PC=4-1=3cm,
∴PC=BD.
又∵AB=AC,∴∠B=∠C,
②假設(shè)
又
則
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間秒,
(2)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,
由題意得:1.5x=x+2×6,解得x=24.
∴點(diǎn)P共運(yùn)動(dòng)了24×1m/s=24cm.
∵24=16+4+4 ∴點(diǎn)P、點(diǎn)Q在AC邊上相遇,
∴經(jīng)過24秒點(diǎn)P與點(diǎn)Q第一次在邊AC上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)試判斷四邊形ADCF的形狀,并證明;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),P為對角線AC延長線上的任意一點(diǎn),PF交AD于M,PE交BC于N,EF交MN于K.
求證:K是線段MN的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見河里有一只小船沿垂直于岸邊的方向劃過來,此時(shí),測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡長AB=10米,求小船C到岸邊的距離CA的長?(參考數(shù)據(jù):=1.73,結(jié)果保留兩位有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長又分別為多少?請你計(jì)算.
(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在 上的點(diǎn)D處,折痕交OA于點(diǎn)C,則陰影部分的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一種游戲:三張大小,質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字1,2,3,現(xiàn)將標(biāo)有數(shù)字的一面朝下,小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和,如果和為奇數(shù),則小明勝,若和為偶數(shù)則小亮勝.
(1)用列表或畫樹狀圖等方法,列出小明和小亮抽得的數(shù)字之和所有可能出現(xiàn)的情況.
(2)請判斷該游戲?qū)﹄p方是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.
(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.
①求證:∠1=∠2;
②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;
(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com