【題目】如圖,已知C是AB的中點(diǎn),D是AC的中點(diǎn),E是BC的中點(diǎn).

(1)若AB=18cm,求DE的長;(2)若CE=5cm,求DB的長.

【答案】(1)9; (2)15

【解析】試題分析:1)先由C是線段AB的中點(diǎn)求出ACBC,再由D是線段AC的中點(diǎn),E是線段BC的中點(diǎn).求出DCCE,從而求出DE的長;

2)首先由(1)得出CEBD的關(guān)系,然后求出BD的長.

試題解析:(1)CAB的中點(diǎn),

AC=BC=AB=9(cm).

DAC的中點(diǎn),

AD=DC=AC= (cm).

EBC的中點(diǎn)

CE=BE=BC= (cm)

又∵DE=DC+CE,

DE=+=9(cm).

(2)(1)AD=DC=CE=BE,

CE=BD.

CE=5cm,

BD=15(cm)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)E不與A,B重合).現(xiàn)給出以下四個結(jié)論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3);(4)EF=AP.上述結(jié)論中始終正確的結(jié)論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2,畫出一個角,使它等于3∠1-∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西省第23題)綜合與探究

如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).

(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);

(2)試探究拋物線上是否存在點(diǎn)F,使,若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;

(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q.試探究:當(dāng)m為何值時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點(diǎn)D,則對于下列結(jié)論:

①△ABE≌△ACF;②△BDF≌△CDE;D在∠BAC的平分線上.

其中正確的是( 。

A. B. C. ①和② D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·河北模擬)3個籃球隊(duì)進(jìn)行單循環(huán)比賽,總的比賽場次是多少?4個球隊(duì)呢?5個球隊(duì)呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016貴州省畢節(jié)市第27題)如圖,已知拋物線與直線交于A(a,8)、B兩點(diǎn),點(diǎn)P是拋物線上A、B之間的一個動點(diǎn),過點(diǎn)P分別作軸、軸的平行線與直線AB交于點(diǎn)C和點(diǎn)E.

(1)求拋物線的解析式;

(2)若C 為AB中點(diǎn),求PC的長;

(3)如圖,以PC,PE為邊構(gòu)造矩形PCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),請求出m,n之間的關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個幾何體的一個視圖是三角形,那么這個幾何體可能________(寫出兩個幾何體即可)

查看答案和解析>>

同步練習(xí)冊答案